Читаем Ткань космоса. Пространство, время и текстура реальности полностью

В действительности Том Бэнкс из университета Ратгерса, Вилли Фишлер из Техасского университета в Остине вместе с Леонардом Сасскиндом и Стивеном Шенкером (оба теперь в Стэнфорде), сформулировали версию теории струн / M-теории, в которой 0-браны являются фундаментальными ингредиентами, из которых могут состоять струны и прочие браны более высокой размерности. Их предположение, известное также как матричная теория

(вот и ещё один вариант расшифровки буквы «M» в «M-теории»), вызвало лавину исследований, но математические трудности до сих пор препятствуют учёным разработать этот подход до конца. Тем не менее те вычисления, которые удалось провести в рамках этого подхода, подтверждают выдвинутое предположение. Если матричная теория верна, то это может означать, что всё (струны, браны и, возможно, даже само пространство и время) состоит из соответствующих агрегатов 0-бран. Это захватывающая перспектива, и исследователи проявляют осторожный оптимизм по поводу того, что в этом направлении в ближайшие несколько лет будет достигнут существенный прогресс.

До сих пор мы говорили о пути, которым в поисках ингредиентов пространства-времени следуют приверженцы теории струн, но, как я упомянул, есть и второй путь, которого придерживаются последователи теории петлевой квантовой гравитации — основного конкурента теории струн. Теория петлевой квантовой гравитации, появившаяся в середине 1980-х гг., является другим многообещающим кандидатом на объединение квантовой механики с общей теорией относительности. Я не буду подробно говорить об этой теории (если она вас интересует, прочтите превосходную книгу Ли Смолина «Три дороги к квантовой гравитации»), а вместо этого укажу на несколько основных моментов, относящихся к нашему обсуждению.

Теория струн и теория петлевой квантовой гравитации заявляют, что они могут достигнуть долгожданной цели создания квантовой теории гравитации, но сделают это совсем разными путями. Теория струн возникла из десятилетних поисков наиболее элементарных компонентов материи; в самом начале для сторонников теории струн гравитация была, в лучшем случае, вторичным вопросом. В противоположность этому, теория петлевой квантовой гравитации выросла на традициях общей теории относительности; для большинства приверженцев этого подхода гравитация всегда была в центре внимания. Если в одном предложении сформулировать различие подходов, то можно сказать, что теория струн идёт от малого (квантовая теория) к большому (гравитация), тогда как теория петлевой квантовой гравитации идёт от большого (гравитация) к малому (квантовая теория).{217} В самом деле, как об этом говорилось в главе 12, теория струн изначально разрабатывалась как квантовая теория сильного ядерного взаимодействия; и только позже, почти по счастливой случайности, было обнаружено, что эта теория в действительности включает гравитацию. Теория петлевой квантовой гравитации, напротив, исходит из общей теории относительности Эйнштейна и стремится включить квантовую механику.

Этот старт с противоположного конца пространственных масштабов отражается в путях развития обеих теорий. Основные достижения одной теории оказываются, до некоторой степени, изъянами другой. Например, теория струн объединяет всю материю и все силы, включая гравитацию (такое полное объединение ускользает от теории петлевой квантовой гравитации), описывая всё на языке вибрирующих струн. Гравитационная частица — гравитон — представляет собой всего лишь одну из колебательных мод струны, и, стало быть, эта теория естественным образом описывает, как эти элементарные сгустки гравитации движутся и взаимодействуют на уровне квантовой механики. Однако, как только что было отмечено, основной изъян текущих формулировок теории струн состоит в том, что они предполагают наличие «фонового пространства-времени», в котором струны движутся и вибрируют. В противоположность этому, основное (и впечатляющее) достижение теории петлевой квантовой гравитации состоит в том, что она не предполагает наличие «фонового пространства-времени». Теория петлевой квантовой гравитации является конструкцией, «независимой от фона». Однако получение обычного пространства и времени, как и достижение известных результатов общей теории относительности на крупных масштабах (что относительно легко получается в рамках существующих формулировок теории струн), когда за стартовую точку берётся необычная беспространственная/безвременна́я концепция, является далеко нетривиальной проблемой, которую пытаются решить исследователи. Более того, по сравнению с теорией струн, теория петлевой квантовой гравитации достигла гораздо меньших успехов в понимании динамики гравитонов.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки