Читаем Ткань космоса. Пространство, время и текстура реальности полностью

На рис. 4.5 показан «моментальный снимок» волны вероятности с пометками, соответствующими интерпретации Борна. В отличие от случая волны на поверхности воды, однако, этот снимок не может быть сделан фотоаппаратом. Никто никогда непосредственно не видел волны вероятности, да и никогда не увидит, согласно представлениям общепринятой квантовой механики. Такая картинка получается в результате решения математических уравнений (выведенных Шрёдингером, Нильсом Бором, Вернером Гейзенбергом, Полем Дираком и другими физиками). Теоретические расчёты можно сравнить с экспериментальными данными следующим образом. Вычислив волну вероятности электрона в желаемых условиях, мы затем воспроизводим в эксперименте эти условия и измеряем положение электрона; затем этот же эксперимент мы повторяем снова и снова, каждый раз записывая измеренное положение электрона. В отличие от того, что ожидал бы Ньютон, идентичные эксперименты при идентичных начальных условиях не обязательно ведут к идентичным результатам.

Вместо этого измерения дают самые разные положения электрона. Иногда мы обнаруживаем электрон здесь, иногда — там, и время от времени — совсем далеко. Если квантовая механика верна, то частота обнаружения электрона в данной точке пространства должна быть пропорциональна амплитуде (точнее, квадрату амплитуды) вычисленной нами волны вероятности в этой точке. За восемьдесят лет экспериментальных проверок предсказания квантовой механики сбывались с впечатляющей точностью.

Рис. 4.5.

Волна вероятности частицы, такой как электрон, говорит о том, каковы шансы обнаружить эту частицу в том или ином месте

На рис. 4.5 показана только часть волны вероятности: согласно квантовой механике любая волна вероятности простирается по всему пространству, через всю Вселенную.{45} Однако во многих случаях волна вероятности быстро спадает практически до нуля вне некоторой малой области, указывая на подавляющую вероятность обнаружить частицу именно в этой области. В этом случае часть волны вероятности, не уместившаяся на рис. 4.5 (та часть, что простирается по всей Вселенной) похожа на волну возле краёв этого рисунка: она такая же плоская и близкая к нулю. Тем не менее, если волна вероятности где-то в галактике Андромеды не точно равна нулю, то всегда есть шанс — пусть даже исчезающее малый, но всё же реальный — обнаружить электрон именно там.

Таким образом, успехи квантовой механики заставляют нас принять, что электрон — составляющая материи, которую мы обычно рассматриваем как занимающую ничтожно малую область пространства (практически точку) — описывается также на языке волны, простирающейся, напротив, на всю Вселенную. Более того, согласно квантовой механике этот корпускулярно-волновой дуализм присущ всем составляющим частям природы, не только электронам: протоны и нейтроны также имеют как корпускулярное, так и волновое описание, а в экспериментах, проведённых в самом начале XX в., было установлено, что даже свет (который явно ведёт себя как волна, на что указывает рис. 4.1) также может быть описан в терминах частиц, «маленьких сгустков света», названных фотонами, которые уже упоминались ранее.{46} Привычные электромагнитные волны, испускаемые, например, стоваттной лампочкой, могут быть с равным успехом описаны в терминах примерно ста миллиардов миллиардов фотонов, испускаемых лампочкой ежесекундно. Мы усвоили, что в квантовом мире любой объект имеет как корпускулярные, так и волновые свойства.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки