За последние восемь десятилетий вездесущность и полезность представления о квантово-механических вероятностных волнах для предсказания и объяснения экспериментальных результатов была установлена с полной несомненностью. Однако до сих пор ещё нет общего согласия в том, что же в действительности представляют собой квантово-механические волны вероятности. Следует ли нам говорить, что волна вероятности электрона и
Вероятность, введённая в квантовой механике, носит иной, более фундаментальный характер. Согласно квантовой механике, независимо от качества сбора данных или повышения мощности компьютеров, самое лучшее, что мы можем сделать, — это предсказать только вероятность того или иного исхода. Самое лучшее, что мы когда-либо сможем сделать, — это предсказать только вероятность того, что электрон или протон или нейтрон или любой другой объект микромира будет обнаружен здесь или там. В микрокосмосе царит вероятность.
В заключение вернёмся к нашему примеру, отражённому на рис. 4.4. Теперь ясно, как с точки зрения квантовой механики объяснить картину интерференции, даваемую одиночными электронами. Каждый электрон описывается своей волной вероятности. При испускании электрона его волна вероятности проходит через обе щели. И подобно световым волнам и волнам на поверхности воды, волны вероятности, испускаемые двумя щелями, накладываются друг на друга. В некоторых точках экрана эти две волны вероятности усиливают друг друга, и результирующая интенсивность велика. В других точках волны частично гасятся, и поэтому интенсивность мала. В третьих точках гребни и впадины волн полностью гасят друг друга, так что итоговая амплитуда в точности равна нулю. В соответствии с этим экран разбивается на точки, куда электрон попадёт с очень высокой вероятностью, на точки, где его ждут меньше, и на точки, попасть в которые у электрона совсем нет шансов. С течением времени попадающие в экран электроны формируют картину, отвечающую распределению вероятности, так что на экране некоторые области получаются более яркими, другие — менее, а третьи — совсем тёмными. Математический анализ показывает, что эти светлые и тёмные области будут выглядеть в точности так, как на рис. 4.4.
Эйнштейн и квантовая механика