Читаем Том 1. Механика, излучение и теплота полностью

Массы тел до столкновения равны, как мы знаем, m0/√(1- w2/c2). Предположив сохраняемость импульса и приняв принцип относительности, можно продемонстрировать интересное свойство массы вновь образованного тела. Представим себе бесконечно малую скорость u, поперечную к скоростям w (можно было бы работать и с конечной скоростью и, но с бесконечно малым значением и легче во всем разобраться), и посмотрим на это столкновение, двигаясь в лифте со скоростью -u. Перед нами окажется картина, изображенная на фиг. 16.4, а. Составное тело обладает неизвестной массой

М. У тела 1, как и у тела 2, есть компонента скорости и, направленная вверх, и горизонтальная компонента, практически равная w. После столкновения остается масса М, движущаяся вверх со скоростью u, много меньшей и скорости света и скорости w. Импульс должен остаться прежним; посмотрим поэтому, каким он был до столкновения и каким стал потом. До столкновения он был равен p~=2mwu, а потом стал р'=M
uu. Но Mu из-за малости u, по существу, совпадает с М0. Благодаря сохранению импульса

(16.11)

Итак, масса тела, образуемого при столкновении двух одинаковых тел, равна их удвоенной массе. Вы, правда, можете сказать: «Ну и что ж, это просто сохранение массы». Но не торопитесь восклицать: «Ну и что ж!», потому что сами-то массы тел были больше, чем когда тела неподвижны. Они вносят в суммарную массу М не массу покоя, а больше. Не правда ли, поразительно! Оказывается, сохранение импульса в столкновении двух тел требует, чтобы образуемая ими масса была больше их масс покоя, хотя после столкновения эти тела сами придут в состояние покоя!

§ 5. Релятивистская энергия

Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными

(16.12)

Потом мы продвинулись дальше и обнаружили, что полная энергия тела равна полной его массе, умноженной на с2. Продолжим эти рассуждения.

Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела М. Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри М. Масса тела М, как мы обнаружили, равна не 2m0, а 2mw. Этой массой 2mw

снабдили тело его составные части, чья масса покоя была 2m0; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция. Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является кинетической энергией. Иными словами, если две частицы сближаются и при этом образуется потенциальная или другая форма энергии, если части составного тела замедляются потенциальным барьером, производя работу против внутренних сил, и т. д.,— во всех этих случаях масса тела по-прежнему равна полной привнесенной энергии. Итак, вы видите, что выведенное выше сохранение массы равнозначно сохранению энергии, поэтому в теории относительности нельзя говорить о неупругих соударениях, как это было в механике Ньютона. Согласно механике Ньютона, ничего страшного не произошло бы, если бы два тела, столкнувшись, образовали тело с массой 2m0, не отличающееся от того, какое получилось бы, если их медленно приложить друг к другу. Конечно, из закона сохранения энергии мы знаем, что внутри тела имеется добавочная кинетическая энергия, но по закону Ньютона на массу это никак не влияет. А теперь выясняется, что это невозможно: поскольку до столкновения у тел была кинетическая энергия, то составное тело окажется тяжелее; значит, это будет уже другое тело. Если осторожно приложить два тела друг к другу, то возникает тело с массой 2m0; когда же вы их с силой столкнете, то появится тело с большей массой. А если масса отличается, то мы можем это заметить. Итак, сохранение импульса в теории относительности с необходимостью сопровождается сохранением энергии.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука