Поэтому можно высказать такое правило: тот, кто почувствовал ускорение
, кто увидел, как вещи скатывались к стенке, и т. д.,— тот и окажется моложе. Разница между братьями имеет «абсолютный» смысл, и все это вполне правильно. Когда мы обсуждали долгую жизнь движущегося мю-мезона, в качестве примера мы пользовались его прямолинейным движением сквозь атмосферу. Но можно породить мю-мезоны и в лаборатории и заставить с помощью магнита их двигаться по кругу. И даже при таком ускоренном движении они проживут дольше, причем столько же, сколько и при прямолинейном движении с этой скоростью. Можно было бы попытаться разрешить парадокс опытным путем: сравнить покоящийся мю-мезон с закрученным по кругу. Несомненно, окажется, что закрученный мю-мезон проживет дольше. Такого опыта еще никто не ставил, но он и не нужен, потому что и так все прекрасно согласуется. Конечно, те, кто настаивает на том, что каждый отдельный факт должен быть непосредственно проверен, этим не удовлетворятся. А мы все же уверенно беремся предсказать результат опыта, в котором Пауль кружится по замкнутому кругу.§ 3. Преобразование скоростей
Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относительно друг друга, различны.
Правильный закон преобразований (Лоренца) таков:
(16.1)
Эти уравнения отвечают сравнительно простому случаю, когда наблюдатели движутся относительно друг друга вдоль общей оси х
. Конечно, мыслимы и другие направления движения, но самое общее преобразование Лоренца выглядит довольно сложно: в нем перемешаны все четыре числа. Мы и впредь будем пользоваться этой простой формулой, так как она содержит в себе все существенные черты теории относительности.Рассмотрим теперь дальнейшие следствия этого преобразования. Прежде всего интересно разрешить эти уравнения относительно x, y, z, t
. Это система четырех линейных уравнений для четырех неизвестных, и их можно решить — выразить x, y, z, t через х', у', z', t'. Результат этот потому интересен, что он говорит нам, как «покоящаяся» система координат выглядит с точки зрения «движущейся». Ясно, что из-за относительности движения и постоянства скорости тот, кто «движется», может, если пожелает, счесть себя неподвижным, другого — движущимся. А поскольку он движется в обратную сторону, то получит то же преобразование, но с противоположным знаком у скорости. Это в точности то, что дает и прямое решение системы, так что все сходится. Вот если бы не сошлось, было бы от чего встревожиться! (16.2)
Теперь займемся интересным вопросом о сложении скоростей в теории относительности. Напомним, что первоначально загадка состояла в том, что свет проходит 300 000 км
/сек во всех системах, даже если они движутся друг относительно друга. Это — частный случай более общей задачи. Приведем пример. Пусть предмет внутри космического корабля движется вперед со скоростью 200 000 км/сек; скорость самого корабля тоже 200 000 км/сек. С какой скоростью перемещается предмет с точки зрения внешнего наблюдателя? Хочется сказать: 400 000 км/сек, но эта цифра уж больно подозрительна: получается скорость большая, чем скорость света! Разве можно себе это представить?Общая постановка задачи такова. Пусть скорость тела внутри корабля равна v
(с точки зрения наблюдателя на корабле), а сам корабль имеет скорость и по отношению к Земле. Мы желаем знать, с какой скоростью vx это тело движется с точки зрения земного наблюдателя. Впрочем, это тоже не самый общий случай, потому что движение происходит в направлении х. Могут быть формулы для преобразования скоростей в направлении у или в любом другом; если они будут нужны, их всегда можно вывести. Внутри корабля скорость тела равна vx'. Это значит, что перемещение х' равно скорости, умноженной на время: (16.3)
Остается только подсчитать, какие у тела значения х
и t с точки зрения внешнего наблюдателя, если х' и t' связаны соотношением (16.3). Подставим (16.3) в (16.2) и получим (16.4)
Но здесь х
выражено через t'. А скорость с точки зрения внешнего наблюдателя — это «его» расстояние, деленное на «его» время, а не на время другого наблюдателя! Значит, надо и время подсчитать с его позиций (16.5)
А теперь разделим х
на t. Квадратные корни сократятся, останется же (16.6)
Это и есть искомый закон: суммарная скорость не равна сумме скоростей (это привело бы ко всяким несообразностям), но «подправлена» знаменателем 1+uv/c2
.Что же теперь будет получаться? Пусть ваша скорость внутри корабля равна половине скорости света, а скорость корабля тоже равна половине скорости света. Значит, и u
равно 1/2с, и v равно 1/2c, но в знаменателе uv равно 1/4, так что