Читаем Том 1. Механика, излучение и теплота полностью

Возведение в степень приносит новые хлопоты. Кто-нибудь обязательно захочет узнать, что означает символ а(3-5). Мы знаем, что 3-5 это решение уравнения (3-5)+5=3. Следовательно, мы знаем, что а(3-5)а5=а3. Теперь можно разделить на а5, тогда а

(3-5)=а3/а5. Еще одно усилие, и вот окончательный результат: а(3-5)=1/а2. Таким образом, мы установили, что возведение числа в отрицательную степень сводится к делению единицы на число, возведенное в положительную степень. Все было бы хорошо, если бы 1/а2
не было бессмысленным символом. Ведь а — это целое положительное или отрицательное число, значит, а2 больше единицы, а мы не умеем делить единицу на числа, большие чем единица!

Система так система. Натолкнувшись на неразрешимую задачу, надо расширить царство чисел. На этот раз нам трудно делить: нельзя найти целого числа ни положительного, ни отрицательного, которое появилось бы в результате деления 3 на 5. Так назовем это и другие подобные ему числа рациональными дробями и предположим, что дроби подчиняются тем же правилам, что и целые числа. Тогда мы сможем оперировать дробями так же хорошо, как и целыми числами.

Еще один пример на степень: что такое а3/5? Мы знаем только, что (3/5)5=3, ибо это определение числа 3/5, и еще, что (а

3/5)5=a(3/5)5, ибо это одно из правил. Вспомнив определение корня, мы получим а(3/5)=5a3. Определяя таким образом дроби, мы не вводим никакого произвола. Сами правила следят за тем, чтобы подстановка дробей вместо написанных нами символов не была бессмысленной процедурой. Замечательно, что эти правила справляются с дробями так же хорошо, как и с целыми числами (положительными и отрицательными)!

Пойдем дальше по пути обобщения. Существуют ли еще уравнения, которых мы не научились решать? Конечно. Например, нам не под силу уравнение b

=21/2=√2. Невозможно найти рациональную дробь, квадрат которой равен 2. В наше время это выяснить довольно просто. Мы знаем десятичную систему и не пугаемся бесконечной десятичной дроби, которую можно использовать для приближения корня из двух. Хотя идея такого приближения появилась еще у древних греков, однако усваивалась она с большим трудом. Чтобы точно сформулировать суть такого приближения, надо постичь такие высокие материи, как непрерывность и соотношения порядка, а это очень трудный шаг. Это сделал Дедекинд очень точно и очень формально. Однако, если не заботиться о математической строгости, легко понять, что числа типа √2 можно представить в виде целой последовательности десятичных дробей (потому что если остановиться на какой-нибудь десятичной дроби, то получится рациональное число), которая все ближе и ближе подходит к желанному результату. Этих знаний нам вполне достаточно; они позволят свободно обращаться с иррациональными числами и вычислять числа типа √2 с нужной точностью.

§ 4. Приближенное вычисление иррациональных чисел

Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10√2. Ответ в принципе очень прост. Возьмем вместо √2 его приближение в виде конечной десятичной дроби — это рациональное число. Возводить в рациональную степень мы умеем; дело сводится к возведению в целую степень и извлечению корня. Мы получим приближенное значение числа 10√2. Можно взять десятичную дробь подлиннее (это снова рациональное число). Тогда придется извлечь корень большей степени; ведь знаменатель рациональной дроби увеличится, но зато мы получим более точное приближение. Конечно, если взять приближенное значение √2 в виде очень длинной дроби, то возведение в степень будет делом очень трудным. Как справиться с этой задачей?

Вычисление квадратных корней, кубичных корней и других корней невысокой степени — вполне доступный нам арифметический процесс; вычисляя, мы последовательно, один за другим, пишем знаки десятичной дроби. Но для того, чтобы возвести в иррациональную степень или взять логарифм (решить обратную задачу), нужен такой труд, что применить прежнюю процедуру уже не просто. На помощь приходят таблицы. Их называют таблицами логарифмов или таблицами степеней, смотря по тому, для чего они предназначены. Они экономят время: чтобы возвести число в иррациональную степень, мы не вычисляем, а только перелистываем страницы.

Хотя вычисление собранных в таблицы значений — процедура чисто техническая, а все же дело это интересное и имеет большую историю. Поэтому посмотрим, как это делается. Мы вычислим не только x=10√2, но решим и другую задачу: 10x=2, или x=log102. При решении этих задач мы не откроем новых чисел; это просто вычислительные задачи. Решением будут иррациональные числа, бесконечные десятичные дроби, а их как-то неудобно объявлять новым видом чисел.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука