Эти результаты хорошо известны, мы не хотим долго на них останавливаться, а выписаны они больше для порядка. Конечно, 1 и 0 обладают особыми свойствами, например a
+0=а, а·1=а и а в первой степени равно а.Составляя табличку формул (22.1), мы пользовались такими свойствами, как непрерывность и соотношение порядка; дать им определение очень трудно: для этого создана целая наука. Кроме того, мы выписали, конечно, слишком много «правил»; некоторые из этих правил можно вывести из других, но не будем на этом останавливаться.
§ 2. Обратные операции
Кроме прямых операций сложения, умножения и возведения в степень, существуют обратные
операции. Их можно определить так. Предположим, что нам заданы а и с; как найти b, удовлетворяющее уравнениям a+b=с, ab=c, ba=с? Если a+b=с, то b определяется при помощи вычитания: b=с-а. Столь же проста операция деления: если ab=c, то b=с/а; это решение уравнения ab=c «задом наперед». Если вам встретится степень: ba=с, то надо запомнить, что b называется корнем а-й степени из с. Например, на вопрос: «Какое число, будучи возведенным в куб, дает 8?» — следует отвечать: «Кубический корень из 8, т. е. 2». Обратите внимание, что, когда дело доходит до степени, появляются две обратные операции. Действительно, ведь раз аb и bа— различные числа, то можно задать и такой вопрос: «В какую степень надо возвести 2, чтобы получить 8?» В этом случае приходится брать логарифм. Если аb=с, то b=logac. He надо пугаться громоздкой записи числа b в этом случае; находить его так же просто, как и результаты других обратных операций. Хотя логарифм «проходят» гораздо позже корня, это такая же простая вещь: просто-напросто это разного сорта решения алгебраических уравнений. Выпишем вместе прямые и обратные операции: (22.2)
В чем же идея? Выписанные соотношения верны для целых чисел, потому что они выводятся из определений сложения, умножения и возведения в степень. Подумаем, нельзя ли расширить класс объектов, которые по
-прежнему будут обозначаться буквами а, b и с и для которых по-прежнему будут верны все сформулированные нами правила, хотя сложение уже нельзя будет понимать как последовательное увеличение числа на единицу, а возведение в степень — как последовательное перемножение целых чисел.§ 3. Шаг в сторону и обобщение
Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии с определением вычитания найти число, которое дает 3, если к нему добавить 5. Перебрав все целые положительные числа (а ведь в правилах говорится только о таких числах), вы скажете, что задача не решается. Однако можно сделать то, что потом станет системой, великой идеей: наткнувшись на неразрешимую задачу, надо сначала отойти в сторону, а затем обобщить
. Пока алгебра состоит для нас из правил и целых чисел. Забудем о первоначальных определениях сложения и умножения, но сохраним правила (22.1) и (22.2) и предположим, что они верны вообще не только для целых положительных чисел (для них эти правила были выведены), а для более широкого класса чисел. Раньше мы записывали целые положительные числа в виде символов, чтобы вывести правила; теперь правила будут определять символы, а символы будут представителями каких-то более общих чисел. Манипулируя правилами, можно показать, что 3-5=0-2. Давайте определим новые числа: 0-1, 0-2, 0-3, 0-4 и т. д. и назовем их целыми отрицательными числами. После этого мы сможем решить все задачи на вычитание. Теперь вспомним и о других правилах, например a(b+c)=ab+ac; это даст нам правило умножения отрицательных чисел. Перебрав все правила, мы увидим, что они верны как для положительных, так и для отрицательных чисел.Мы значительно расширили область действия наших правил, но достигли этого ценой изменения смысла символов.
Уже нельзя, например, сказать, что умножить 5 на -2 — значит сложить 5 минус два раза. Эта фраза бессмысленна. Тем не менее, пользуясь правилами, вы всегда получите верный результат.