Интересно нарисовать картину распределения поля в разных случаях. Наиболее характерный множитель в формуле (29.1) — это a (t-r/с); чтобы его понять, возьмем простейший случай θ=90° и изобразим поле на графике. Раньше мы были заняты вопросом, как ведет себя поле в данной фиксированной точке пространства с течением времени. Теперь посмотрим, как выглядит поле в разных точках пространства в один и тот же момент времени. Иначе говоря, нам нужен «моментальный снимок» поля, из которого будет ясно, каково оно в разных местах. Разумеется, картина распределения поля зависит от ускорения заряда. Зададим характер движения заряда: пусть сначала он покоится, затем внезапно начнет определенным образом ускоряться (как показано на фиг. 29.2) и, наконец, остановится.
Затем, чуть позже, измерим поле в разных точках пространства. Мы можем утверждать, что поле будет иметь вид, приведенный на фиг. 29.3.
В самом деле, поле в каждой точке определяется ускорением заряда в предыдущий момент времени, причем под словом «предыдущий» понимается r/
Другими словами, увеличив время на Δt, можно восстановить значение a(t-r/с) добавлением отрезка Δr=сΔt, т. е. поле распространяется со временем как волна,
Особый интерес представляет случай периодических колебаний заряда q. В опыте, рассмотренном в гл. 28, смещение зарядов x в момент t равнялось некоторой константе х0
, амплитуде колебаний, умноженной на cosωt. Ускорение в этом случае равногде
Отвлечемся пока от угла θ и постоянных и посмотрим, как ведет себя
§ 2. Энергия излучения
Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r. Следует заметить, что
Отсюда следует, что энергия, получаемая в данном месте от источника поля, уменьшается по мере удаления от источника, точнее, она падает обратно пропорционально квадрату расстояния. Существует очень простая интерпретация этого факта: соберем энергию волны, попадающую в конус с вершиной в источнике, сначала на расстоянии r1 (фиг. 29.4), а затем на расстоянии r2
; тогда количество энергии, падающее на единичную площадку, обратно пропорционально квадрату расстояния r, а площадь поверхности внутри конуса растет прямо пропорционально квадрату расстояния r от поверхности до вершины конуса.