Таким образом, на каком бы расстоянии от вершины конуса мы ни находились, энергия, проходящая внутри конуса, одна и та же! В частности, если окружить источник со всех сторон поглощающими осцилляторами, то полное количество энергии, поступающее в них от волны, будет постоянным, независимо от расстояния до источника. Закон спадания поля Е как 1/r эквивалентен утверждению, что имеется поток энергии, который нигде не теряется; при этом энергия распространяется на все большие и большие области пространства. Таким образом, заряд, колеблясь, безвозвратно теряет энергию, уходящую все дальше и дальше. Заряд не может вернуть излученную энергию с тех расстояний, где применимо наше рассмотрение; для достаточно больших расстояний от источника вся излученная энергия уходит прочь. Конечно, энергия не исчезает бесследно и ее можно поглотить с помощью других систем. Потери энергии на излучение мы будем изучать в гл. 32.
Рассмотрим теперь более подробно волны вида (29.3) как функции времени в данном месте и как функции расстояния в данный момент времени. Как и раньше, будем отвлекаться от постоянных множителей и множителя 1/r.
§ 3. Синусоидальные волны.
Зафиксируем вначале r и рассмотрим поле как функцию времени. Получается функция, которая осциллирует с угловой частотой ω. Угловую частоту со можно определить как скорость изменения фазы со временем (радианы в секунду). Эта величина нам уже знакома. Период есть время одного колебания, одного полного цикла; он равен 2π/ω, так как произведение ω и периода есть полный период косинуса.
Введем новую величину, которая очень часто используется в физике. Она возникает в другой ситуации, когда t фиксировано и волна рассматривается как функция расстояния r. Легко увидеть, что как функция r волна (29.3) тоже осциллирует. Если отвлечься от множителя 1/r, то мы видим, что Е тоже осциллирует, когда мы меняем положение. Тогда по аналогии с ω введем так называемое
Роль периода здесь играет другая величина, ее можно было бы назвать периодом в пространстве, однако ее обычное название — длина волны, а обозначается она буквой λ. Длина волны есть расстояние, на котором колебание поля совершает один полный цикл. Легко видеть, что длина волны равна 2π/k, потому что
В нашем конкретном случае между частотой и длиной волны имеется определенная связь, однако приведенные выше определения k и ω носят совершенно общий характер и применимы также в тех физических условиях, когда никакого соотношения между этими величинами нет. Для рассматриваемой нами волны скорость изменения фазы с расстоянием найти легко. В самом деле, запишем выражение для фазы φ=ω(t-r/с) и возьмем частную производную по r
Это соотношение можно записать разными способами:
Почему длина волны оказывается равной периоду, умноженному на c? Очень просто. Дело в том, что за время, равное одному периоду, волны, двигаясь со скоростью с, пройдут расстояние ct0
, а, с другой стороны, это расстояние должно быть равно длине волны.В других физических явлениях, когда приходится иметь дело не со светом, такого простого соотношения между
Введенное понятие длины волны позволяет уточнить пределы применимости формулы (29.1). Напомним, что поле складывается из нескольких частей: одна из них спадает как 1/r, другая — как 1/r2
, а остальные падают с расстоянием еще быстрее. Имеет смысл выяснить: когда часть, спадающая по закону 1/r, наиболее существенна, а остальными можно пренебречь? Естественно ответить: «Когда мы отойдем достаточно далеко от источника, потому что член 1/r2 будет мал по сравнению с членом 1/r». Но что значит «достаточно далеко»? В общих чертах ответ таков: все остальные члены имеют порядок величины λ/r по сравнению с первым членом 1/r. Так что когда мы находимся на расстоянии нескольких длин волн от источника, формула (29.1) описывает поле в хорошем приближении. Область, удаленную от источника на расстояние, превышающее несколько длин волн, иногда называют «волновой зоной».§ 4. Два дипольных излучателя
Рассмотрим теперь результирующее поле, которое возникает при одновременном действии двух осцилляторов. В предыдущей главе уже разбиралось несколько наиболее простых случаев. Мы дадим сначала качественную картину явления, а затем опишем те же эффекты с количественной точки зрения. Возьмем простейший случай, когда осцилляторы и детектор расположены в одной горизонтальной плоскости, а колебания осцилляторов происходят в вертикальном направлении.