Читаем Том 1. Механика, излучение и теплота полностью

Возникает интересный вопрос: предположим, что имеются два источника с несколько разными частотами излучения или несколько разными длинами волн; насколько близкими должны быть эти частоты, чтобы по дифракционной картине нельзя было отделить одну частоту от другой? Красные и синие линии четко различаются. А вот если один луч красный, а другой чуть-чуть покраснее, самую малость. Насколько близки они должны быть? Ответ дается величиной, которая называется разрешающей способностью решетки. Ниже мы используем один из способов ее определения.

Предположим, что удалось найти дифракционный максимум для лучей определенного цвета, расположенный под некоторым углом. Если мы изменим длину волны, то и значение фазы (2πdsinθ)/λ будет иным и максимум, разумеется, возникнет при каком-то другом угле. Именно поэтому красные и синие полосы на экране разделяются. Насколько должны отличаться углы, чтобы мы смогли различить два разных максимума? Если верхушки максимумов совпадают, мы, конечно, не сможем различить их один от другого. Если же максимумы достаточно далеки друг от друга, то на картине распределения света возникают два горба.

Чтобы заметить, когда начинает вырисовываться двойной горб, лучше всего воспользоваться простым правилом, называемым обычно правилом (или критерием) Рэлея (фиг. 30.6).

Фиг. 30.6. Иллюстрация критерия Рэлея. Максимум одного распределения совпадает с минимумом другого.


По этому правилу первый минимум на дифракционной картине для одной длины волны должен совпадать с максимумом для другой длины волны. Теперь уже нетрудно вычислить разность длин волн, когда один минимум в точности «садится» на максимум другого пучка. Лучше всего для этого воспользоваться геометрическим способом.

Чтобы возник максимум при длине волны λ', расстояние Δ (см. фиг. 30.3) должно быть равно nλ', а чтобы возник максимум порядка m, расстояние Δ должно быть равно mn

λ'. Другими словами, (2πd/λ'), sinθ=2πm и ndsinθ, равное Δ, естьλ', умноженная на mn, или соответственно mnλ'. Если мы хотим, чтобы под тем же углом для другого луча с длиной волны λ, появился минимум, расстояние Δ должно превышать
mnλ ровно на одну длину волны λ, т. е. Δ=mnλ+λ=mnλ'. Отсюда, полагая λ'=λ+δλ, получаем

(30.9)

Отношение λ/δλ называется разрешающей способностью дифракционной решетки; она равна, как видно из формулы, полному числу линий в решетке, умноженному на порядок максимума луча. Легко убедиться, что эта формула эквивалентна следующему утверждению: разность частот должна быть равна обратной величине разности времен прохождения для самых крайних интерферирующих лучей[21]

Полезно запомнить именно эту общую формулу, потому что она применима не только для решеток, но и для любых устройств, тогда как вывод формулы (30.9) связан со свойствами дифракционных решеток.

§ 4. Параболическая антенна

Рассмотрим теперь еще один вопрос, связанный с разрешающей способностью. Речь идет об антеннах радиотелескопов, использующихся для определения положения источников радиоволн на небе и их угловых размеров. Если бы мы взяли нашу старую антенну и с ее помощью приняли сигналы, то, конечно, не могли бы сказать, откуда они пришли. А знать, где находится источник, очень важно. Можно, конечно, покрыть всю Австралию проводами-диполями, расположенными на равном расстоянии друг от друга. Затем подсоединить все диполи к одному приемнику так, чтобы уравнять запаздывание сигналов в соединительных проводах. Тогда сигналы от всех диполей придут к приемнику с одной фазой. Что в результате получится? Если источник расположен достаточно далеко и прямо над нашей системой, то сигналы от всех антенн придут к приемнику в фазе.

Но предположим, что источник расположен под небольшим углом θ к вертикали. Тогда сигналы, принятые различными антеннами, будут немного сдвинуты по фазе. В приемнике все эти сигналы с разными фазами складываются, и мы ничего не получим, если только угол θ достаточно велик. Но как велик должен быть этот угол? Ответ: мы получим нуль, если угол Δ/L=θ (см. фиг. 30.3) соответствует сдвигу фаз в 360°, т. е. если Δ равно длине волны λ.

Этот результат легко понять, если учесть, что векторы, соответствующие сигналам от разных антенн, образуют замкнутый многоугольник и их сумма тогда обращается в нуль. Наименьший угол, который антенное устройство длиной L еще может разрешить, есть θ=λ/L. Заметим, что кривая чувствительности антенны при приеме имеет точно такой же вид, как и распределение интенсивности, даваемое антеннами-передатчиками. Здесь проявляется так называемый принцип обратимости. Согласно этому принципу, для любых антенных устройств, при любых углах и т. п. справедливо правило: относительная чувствительность в разных направлениях совпадает с относительной интенсивностью для тех же направлений, если заменить приемник передатчиком.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука