Читаем Том 1. Механика, излучение и теплота полностью

Точно такое же устройство годится и для света! Только вместо проволок берут стеклянную пластинку и наносят на нее ряд штрихов так, чтобы каждый из них рассеивал свет иначе, чем остальная поверхность пластинки. Если затем направить на пластинку пучок света, то каждый штрих станет источником, а если расстояние между штрихами будет достаточно мало, но не меньше одной длины волны (практически таких малых расстояний все равно невозможно добиться), возникает удивительное явление: лучи идут через пластинку не только по прямой, но и под конечным углом к нормали, зависящим от расстояния между штрихами! Устройства такого типа действительно существуют и широко используются, их называют дифракционными решетками.

Одна из разновидностей дифракционных решеток представляет собой обычную стеклянную пластинку, прозрачную и бесцветную, с нацарапанными на ней штрихами. Число штрихов на 1 мм зачастую достигает нескольких сотен, а расстояние между ними выдерживается с большой точностью. Действие такой решетки можно наблюдать, посылая сквозь нее с помощью проектора узкую вертикальную полоску света (изображение щели) на экран. Помещая решетку на пути света так, чтобы штрихи были расположены вертикально, мы увидим на экране ту же самую полоску света, но по сторонам от нее, кроме того, будут и другие полосы,

окрашенные в разные цвета. Разумеется, мы получили не что иное, как уширенное изображение щели; угол θ в (30.6) зависит от λ, и разная окраска света, как мы знаем, соответствует разным частотам и разным длинам волн. Самой большой видимой длиной волны обладает красный свет; в силу условия dsinθ=λ ему соответствует наибольшее θ. И мы действительно обнаруживаем, что на экране красная полоса лежит дальше всех от центра изображения! С другой стороны должна быть такая же полоса; и в самом деле, мы видим на экране вторую полосу. Выражение (30.6) имеет еще одно решение с m=2. На соответствующем ему месте на экране видно какое-то расплывчатое слабое пятно, а дальше в сторону чуть заметен еще целый ряд слабых полосок.

Только что мы сказали, что максимумы всех порядков должны иметь одинаковую интенсивность, а у нас интенсивность получается разная, и, более того, правый и левый максимумы первого порядка отличаются по своей яркости! Причина здесь кроется в том, что решетки изготовляются особым способом, чтобы как раз и получался подобный эффект. Как это делается? Если бы дифракционные решетки имели бесконечно тонкие штрихи, расположенные на строго равном расстоянии друг от друга, то интенсивности максимумов всех порядков были бы одинаковы. Но фактически, хотя мы пока разобрали только простейший случай, мы могли бы также взять систему, состоящую из пар антенн, причем в каждой паре установили бы определенную разность фаз и интенсивности. Тогда можно было бы получить разную интенсивность у максимумов разных порядков. На дифракционную решетку часто наносят не ровные, а пилообразные штрихи. Специально подбирая форму «зубцов», можно увеличить интенсивность спектра данного порядка по отношению к остальным. В практической работе с решетками желательно иметь максимальную яркость в одном из порядков. Мы отложим пока весьма сложное объяснение этих фактов, скажем только, что такие решетки оказываются гораздо более полезными в применениях.

До сих пор мы рассматривали случай, когда фазы всех источников равны. Однако полученная нами формула (30.3) годится также и тогда, когда сдвиг фаз φ каждого источника по сравнению с предыдущим постоянен и равен α. Это означает, что антенны должны быть соединены по схеме, обеспечивающей небольшой сдвиг фазы между ними. Можно ли создать подобное устройство для света? Да, и очень просто. Пусть источник света находится на бесконечности и свет падает на решетку под некоторым углом

, равным θвх (фиг. 30.4); рассмотрим рассеянный пучок света, выходящий под углом θвыхвых — это наш старый угол θ, а θвх нужен для создания разности фаз у источников).

Фиг. 30.4. Разность хода двух лучей, отраженных соседними линиями решетки, равна dsinθвых— dsinθвх

.


Пучок света от бесконечно удаленного источника падает сначала на первый штрих, затем на второй и т. д., сдвиг фазы света, попадающего на два соседних штриха, есть α=- dsinθвх/λ. Отсюда получаем формулу для дифракции света, падающего на решетку под некоторым углом:

(30.7)

Попытаемся найти направление максимальной интенсивности в этом случае. Условие возникновения максимума по-прежнему состоит в том, что φ должно быть числом, кратным 2π. Здесь следует отметить несколько интересных моментов.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука