Читаем Том 1. Механика, излучение и теплота полностью

Для неподвижного наблюдателя волна имеет вид cos(ωt-kx); все гребни, впадины и нули описываются этой формой. А как будет выглядеть та же самая физическая волна для движущегося наблюдателя? Там, где поле равно нулю, любой наблюдатель при измерении получит нуль; это есть релятивистский инвариант. Следовательно, форма волны не меняется, нужно только написать ее в системе отсчета движущегося наблюдателя:

Произведя перегруппировку членов, получим

(34.16)

Мы снова получим волну в виде косинуса с частотой ω' в качестве коэффициента при t' и некоторой другой константой k' — коэффициентом при х'. Назовем k' (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким образом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами

(34.17)

(34.18)

Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений.

§ 7. Четырехвектор (ω, k)

Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота ω' линейно связана со старой частотой ω и старым волновым числом k, а новое волновое число представляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоянием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с преобразованиями Лоренца для координаты и времени: если ω сопоставить с t, а k с

х/с2, то новое ω' сопоставляется с t', a k' — с координатой х'/с2. Иначе говоря, при преобразовании Лоренца ω и k изменяются так же, как t и х. Эти величины ω и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координаты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, ω и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.

Пусть задана система координат x, y, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть λ, а направление распространения волны не совпадает ни с одной осью координат.

Фиг. 34.11. Плоская волна, движущаяся под углом.


Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos(ωt-ks), где k=2π/ λ a s (расстояние вдоль направления движения волны) — проекция вектора положения на направление движения. Запишем это следующим образом: пусть r есть вектор точки в пространстве, тогда s есть r·е

k, где ek — единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r·ek), проекции расстояния на направление движения. Следовательно, наша волна описывается формулой cos(ωt-kek·r).

Оказывается очень удобным ввести вектор k, называемый волновым вектором; величина его равна волновому числу 2π/λ, а направление совпадает с направлением распространения волны

(34.19)

Благодаря введению этого вектора волна приобретает вид cos(ωt-k·r), или cos(ωt-k

xx-kyy-kzz). Выясним смысл проекций k, например kx. Очевидно, kx есть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла α между осью х и направлением движения истинной волны:

(34.20)

Следовательно, скорость изменения фазы, обратно пропорциональная λx, в направлении х оказывается меньше на множитель cosα; но этот же множитель содержит и kx, равный модулю k, умноженному на косинус угла между k и осью х!

Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины ω, kx, ky

, kz преобразуются в теории относительности как четырехвектор, причем ω соответствует времени, а kx, ky, kz соответствуют x, y и z и компонентам четырехвектора.

Еще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно составить релятивистское штрихованное произведение. Взяв вектор положения xμ (где μ нумерует четыре компоненты — время и три пространственные) и волновой вектор kμ (где μ снова пробегает четыре значения), образуем штрихованное произведение хμ и kμ, записываемое в виде ∑'kμ хμ. Это произведение есть инвариант, не зависящий от выбора системы координат. Согласно определению штрихованного произведения, можно записать ∑'kμхμ. следующем виде:

(34.21)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука