Для неподвижного наблюдателя волна имеет вид cos(ωt-
Произведя перегруппировку членов, получим
Мы снова получим волну в виде косинуса с частотой ω' в качестве коэффициента при t' и некоторой другой константой k' — коэффициентом при х'. Назовем k' (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким образом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами
Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений.
§ 7. Четырехвектор (ω, k)
Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота ω' линейно связана со старой частотой ω и старым волновым числом k, а новое волновое число представляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоянием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с преобразованиями Лоренца для координаты и времени: если ω сопоставить с
Пусть задана система координат x, y, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть λ, а направление распространения волны не совпадает ни с одной осью координат.
Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos(ωt-ks), где k=2π/ λ a s (расстояние вдоль направления движения волны) — проекция вектора положения на направление движения. Запишем это следующим образом: пусть r
есть вектор точки в пространстве, тогда s есть r·еk, где ek — единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r·ek), проекции расстояния на направление движения. Следовательно, наша волна описывается формулой cos(ωt-kek·r).Оказывается очень удобным ввести вектор k
, называемый волновым вектором; величина его равна волновому числу 2π/λ, а направление совпадает с направлением распространения волныБлагодаря введению этого вектора волна приобретает вид cos(ωt-k
·r), или cos(ωt-kxx-kyy-kzz). Выясним смысл проекций k, например kx. Очевидно, kx есть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла α между осью х и направлением движения истинной волны:Следовательно, скорость изменения фазы, обратно пропорциональная λx
, в направлении х оказывается меньше на множитель cosα; но этот же множитель содержит и kx, равный модулю k, умноженному на косинус угла между k и осью х!Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины ω, kx
, ky, kz преобразуются в теории относительности как четырехвектор, причем ω соответствует времени, а kx, ky, kz соответствуютЕще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно составить релятивистское штрихованное произведение. Взяв вектор положения xμ
(где μ нумерует четыре компоненты — время и три пространственные) и волновой вектор kμ (где μ снова пробегает четыре значения), образуем штрихованное произведение хμ и kμ, записываемое в виде ∑'kμ хμ. Это произведение есть инвариант, не зависящий от выбора системы координат. Согласно определению штрихованного произведения, можно записать ∑'kμхμ. следующем виде: