Читаем Том 1. Механика, излучение и теплота полностью

Поскольку kμ есть четырехвектор, то, как мы уже знаем, ∑'kμxμ есть инвариант по отношению к преобразованиям Лоренца. Под знак косинуса в нашей формуле для плоской волны входит именно это произведение, и оно обязано быть инвариантом относительно преобразований Лоренца. У нас не может появиться формула, у которой под знаком косинуса стоит неинвариантная величина, потому что мы знаем, что значение фазы не зависит от выбора системы координат.

§ 8. Аберрация

При выводе формул (34.17) и (34.18) мы взяли простой пример, когда k лежит в направлении движения системы координат; но мы можем обобщить теперь эти формулы на другие возможные случаи. Пусть источник посылает луч света в определенном направлении; это направление фиксируется неподвижным наблюдателем, а мы движемся, скажем, по поверхности Земли в горизонтальном направлении (фиг. 34.12,а).

Фиг, 34.12.

Удаленный источник света S. анаблюдаемый через неподвижный телескоп; бнаблюдаемый через телескоп, движущийся в боковом направлении.


В каком направлении падает луч света с нашей точки зрения? Можно получить ответ, записав четыре компоненты kμ и совершив преобразования Лоренца. Но можно воспользоваться и следующим рассуждением: чтобы увидеть луч, следует наш телескоп повернуть на некоторый угол (фиг. 34.12, б). Почему? Потому что свет падает сверху со скоростью с, а мы движемся горизонтально со скоростью v, и свет пройдет «прямо» через телескоп, если последний наклонить на некоторый угол. Легко понять, что расстояние по горизонтали равно vt, а по вертикали ct

, и, обозначив угол наклона через θ', мы получим tgθ'=v/c. Замечательно! В самом деле, замечательно, если бы не одна маленькая деталь: θ' не есть тот угол, под которым надо установить телескоп по отношению к поверхности Земли, потому что наш анализ проводился с точки зрения неподвижного наблюдателя.

Горизонтальное расстояние, которое мы считали равным vt, неподвижный по отношению к Земле наблюдатель найдет равным совсем другой величине, так как он пользуется, с нашей точки зрения, «сжатой» линейкой. Из-за эффекта сокращения возникает совсем другое соотношение:

(34.22)

что эквивалентно

(34.23)

Полезно вам самим получить это соотношение с помощью преобразования Лоренца.

Описанный выше эффект кажущегося изменения направления луча называется аберрацией и обнаружен на опыте. Казалось бы,

как он может проявиться? Ведь никто не знает, где на самом деле расположена звезда. Пусть мы действительно смотрим на звезду в неправильном, кажущемся направлении, откуда нам известно, что оно неправильное? Известно; потому, что Земля обращается вокруг Солнца. Сегодня мы устанавливаем телескоп под одним углом, а через шесть месяцев мы должны его уже повернуть. Вот откуда мы знаем о существовании этого эффекта.

§ 9. Импульс световой волны

Займемся теперь другим вопросом. В прошлых главах мы ни разу не говорили о магнитном поле световой волны. Обычно эффекты, связанные с магнитным полем, очень малы, однако есть один интересный и важный эффект, возникающий под влиянием магнитного поля. Пусть имеется луч света, посылаемый каким-то источником, который действует на заряд и заставляет его колебаться вверх и вниз. Предположим, что электрическое поле направлено вдоль оси х; тогда колебания заряда будут происходить тоже вдоль оси х: положение заряда дается значением х, а скорость заряда есть v

(фиг. 34.13).

Фиг. 34.13. Движущийся под действием электрического поля заряд, на который со стороны магнитного поля действует сила, направленная по световому лучу.


Магнитное поле направлено перпендикулярно электрическому. Электрическое поле, воздействуя на заряд, заставляет его раскачиваться вверх и вниз, а как действует магнитное поле? Магнитное поле действует только на движущийся заряд (пусть это будет, например, электрон); но электрон действительно движется, ведь он разгоняется электрическим полем, следовательно, оба поля действуют совместно. Двигаясь вверх и вниз с некоторой скоростью, электрон испытывает действие силы, равной по величине произведению Bvq, а каково направление этой силы? Направление силы совпадает с направлением распространения света. Следовательно, падающий на заряд луч света заставляет его колебаться и, кроме того, тянет его с некоторой силой в направлении движения световой волны. Это явление носит название давления электромагнитных волн, или светового давления.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука