Читаем Том 2. Электромагнетизм и материя полностью

Рассчитать работу переноса по такому пути — детская забава (а иначе бы мы его и не выбрали). Во-первых, на участке aa' работа не производится. Поле по закону Кулона радиально, т. е. направлено поперек направления движения. Во-вторых, на участке a'b поле меняется как 1/r2 и направлено по движению. Так что работа переноса пробного заряда от а к b равна

(4.20)

Выберем теперь другой легкий путь, скажем тот, который изображен на фиг. 4.3, б. Он идет попеременно то по дуге окружности, то по радиусу. Каждый раз, когда путь пролегает по дуге, никакой работы не затрачивается. Каждый раз, когда путь идет по радиусу, интегрируется 1/r2. По первому радиальному участку интеграл берется от ra до ra', по следующему — от rа. до rа" и т. д. Сумма всех таких интегралов как раз равна одному интегралу, но в пределах от rа до rb. В общем получится тот же ответ, что и в первом испробованном нами пути. Ясно, что и для

любого пути, составленного из произвольного числа участков такого вида, получится тот же результат.

Ну а как насчет плавных траекторий? Получим ли мы тот же ответ? Этот вопрос мы обсудили в вып. 1, гл. 13. Пользуясь теми же доводами, что и тогда, мы можем заключить, что работа переноса единичного заряда от а до b от пути не зависит:

А раз выполняемая работа зависит только от концов пути, то она может быть представлена в виде разности двух чисел. В этом можно убедиться следующим образом. Выберем отправную точку Р0 и договоримся оценивать наш интеграл, пользуясь только теми траекториями, которые проходят через точку Р0. Обозначим работу, выполненную при движении против поля от Р0 до точки а, через φ(а), а работу на участке от Р0 до точки b — через φ(b) (фиг. 4.4).

Фиг. 4.4. Работа, затраченная на движение вдоль любого пути от а до b, равна минус работе от некоторой точки Р

0до а плюс работа от Р0до b.


Работа перехода от а к Р0 (по дороге к b) равна φ(a) с минусом, так что

(4.21)

Так как повсюду будет встречаться только разность значений функции φ в двух точках, то положение точки Р0 в сущности безразлично. Однако как только отправная точка выбрана, число φ тем самым определяется в любой точке пространства; значит, φ является скалярным полем, функцией от х, у, z. Эту скалярную функцию мы называем

электростатическим потенциалом в произвольной точке.

Электростатический потенциал

(4.22)

Часто очень удобно брать отправную точку на бесконечности. Тогда потенциал φодиночного заряда в начале координат, взятый в произвольной точке (х, у, z), равен [см. уравнение (4.20)]

(4.23)

Электрическое поле нескольких зарядов можно записать в виде суммы электрических полей от первого заряда, от второго, от третьего и т. д. Интегрируя сумму для того, чтобы определить потенциал, мы придем к сумме интегралов. Каждый из них — это потенциал соответствующего заряда. Значит, потенциал φ множества зарядов есть сумма потенциалов каждого из зарядов по отдельности. Таким образом, и для потенциалов существует принцип наложения. Пользуясь такими же аргументами, как и тогда, когда мы искали электрическое поле группы зарядов или распределения зарядов, мы можем получить окончательные формулы для потенциала φ в точке, обозначенной как (1):

(4.24)

(4.25)

Не забывайте, что потенциал φ имеет физический смысл: это потенциальная энергия, которую имел бы единичный заряд, если его перенести в указанную точку пространства из некоторой отправной точки.

§ 4. E=-∇φ

С какой стати нас заинтересовал потенциал φ? Силы, действующие на заряды, даются величиной Е — электрическим полем. Вся соль в том, что Е из φ очень легко получить, не труднее, чем вычислить производную. Рассмотрим две точки с одинаковыми у и z, но с разными х

: у одной х, у другой x+Δx; поинтересуемся, какую работу надо совершить, чтобы перенести единичный заряд из одной точки в другую. Путь переноса — горизонтальная линия от х до х+Δх. Работа равна разности потенциалов в двух точках

Но работа против действия силы на том же отрезке равна

Мы видим, что

(4.26)

Равным образом, Еу=-∂φ/∂y, Ez=-∂φ/∂z; все это в обозначениях векторного анализа можно подытожить так:

(4.27)

Это дифференциальная форма уравнения (4.22). Любую задачу, в которой заряды заданы, можно решить, вычислив по (4.24) или (4.25) потенциал и рассчитав по (4.27) поле. Уравнение (4.27) согласуется также с тем, что получается в векторном анализе: с тем, что для любого скалярного поля

(4.28)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука