Читаем Том 2. Электромагнетизм и материя полностью

Теперь в объеме, заключенном между двумя поверхностями S и S', никакого заряда нет. Общий поток из этого объема (включая поток через S') равен нулю, в чем можно убедиться при помощи прежних аргументов. Они говорят нам, что поток через S' внутрь объема такой же, как поток через S наружу.

Для S' мы можем выбрать любую, какую угодно форму, поэтому давайте сделаем ее сферой с зарядом в центре (фиг. 4.10).

Фиг. 4.10. Поток через сферическую поверхность, охватывающую точечный заряд q, равен qlε0.


Тогда поток через нее подсчитать легко. Если радиус малой сферы равен r, то значение Е повсюду на ее поверхности равно

и направлено всегда по нормали к поверхности. Весь поток через S' получится, если эту нормальную составляющую Е умножить на площадь поверхности:

(4.31)

т. е. равен числу, не зависящему от радиуса сферы! Значит, и поток наружу через S тоже равен q/ε0; это значение не зависит от формы S до тех пор, пока заряд q находится внутри. Наши выводы мы можем записать так:

(4.32)

Давайте вернемся к нашей аналогии с «дробинками» и посмотрим, есть ли в ней смысл. Наша теорема утверждает, что суммарный поток дробинок через поверхность равен нулю, если поверхность не окружает собой ружье, стреляющее дробью. А если ружье окружено поверхностью, то какого бы размера или формы она ни была, количество проходящих через нее дробинок всегда одно и то же — оно дается скоростью, с которой дробинки вылетают из ружья. Все это выглядит вполне разумно для сохраняющихся дробинок. Но сообщает ли эта модель нам хоть что-то сверх того, что получается просто из уравнения (4.32)? Никому не удалось добиться того, чтобы «дробинки» произвели на свет что-нибудь сверх этого закона. Кроме него, они порождают только ошибки. Поэтому-то мы сегодня предпочитаем чисто абстрактное представление об электромагнитном поле.

§ 6. Закон Гаусса; дивергенция поля Е

Наш изящный результат — уравнение (4.32) — был доказан для отдельного точечного заряда. А теперь допустим, что имеются два заряда: заряд q1 —в одной точке и заряд (q2 — в другой. Задача выглядит уже потруднее. Теперь электрическое поле, нормальную составляющую которого мы интегрируем, это уже поле, созданное обоими зарядами. Иначе говоря, если E1—то электрическое поле, которое создал бы один только заряд q1

,a E2 — электрическое поле, создаваемое одним зарядом q2, то суммарное электрическое поле равно Е=Е1+Е2. Поток через произвольную замкнутую поверхность S равен

(4.33)

Поток при наличии двух зарядов — это поток, вызванный одним зарядом, плюс поток, вызванный другим. Если оба находятся снаружи S, то поток сквозь S равен нулю. Если q1 находится внутри

S, а q2 — снаружи, то первый интеграл даст q10, а второй — нуль. Если поверхность окружает оба заряда, то каждый внесет вклад в интеграл и поток окажется равным (q1+q2)/ε0. Общее правило очевидно: суммарный поток из замкнутой поверхности равен суммарному заряду внутри нее, деленному на ε0.

Этот результат представляет собой важный общий закон электростатического поля, и называется он теоремой Гаусса, или законом Гаусса:

Закон Гаусса:

(4.34)

или

(4.35)

где

(4.36)

Если мы описываем расположение зарядов на языке плотности зарядов ρ, то мы можем считать, что каждый бесконечно малый объем dV содержит «точечный» заряд ρdV. Тогда сумма по всем зарядам есть интеграл

(4.37)

Из нашего вывода видно, что закон Гаусса вытекает из того факта, что показатель степени в законе Кулона в точности равен двум. Поле с законом 1/r3, да и любое поле 1/rn с n≠2, не привело бы к закону Гаусса. Значит, закон Гаусса как раз выражает (только в другой форме) закон сил Кулона, действующих между двумя зарядами. Действительно, отправляясь от закона Гаусса, можно вывести закон Кулона. Оба они совершенно равноценны до того момента, пока силы между зарядами действуют радиально.

Теперь мы хотим записать закон Гаусса на языке производных. Чтобы это сделать, применим его к поверхности бесконечно малого куба. В гл. 3 мы показали, что поток Е из такого куба равен дивергенции ·Е, помноженной на объем dV куба. Заряд внутри dV по определению ρ равен ρdV, так что закон Гаусса дает

или

(4.38)

Дифференциальная форма закона Гаусса — это первое из наших фундаментальных уравнений поля в электростатике, уравнение (4.5). Мы теперь показали, что два уравнения электростатики (4.5) и (4.6) эквивалентны закону силы Кулона. Разберем один пример применения закона Гаусса (другие примеры будут рассмотрены позже).

§ 7. Поле заряженного шара

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука