Как же наблюдать поле внутри заряженной сферы? Один из способов — это попытаться зарядить тело, дотронувшись им до внутренней части сферического проводника. Вы знаете, что если коснуться металлическим шариком заряженного тела, затем электрометра, то прибор зарядится и стрелка отклонится от нуля (фиг. 5.10,
Шар собирает на себя заряды, потому что снаружи заряженной сферы имеются электрические поля, заставляющие заряды переходить на шарик (или с него). А если вы проделаете тот же опыт, коснувшись шариком
Кажется, первым, заметившим, что поле внутри заряженной сферы равно нулю, был Бенджамен Франклин. Это показалось ему странным. Когда он сообщил об этом Пристли, тот заподозрил, что это связано с законом обратных квадратов, потому что было известно, что сферический слой вещества не создает внутри себя поля тяготения. Но Кулон измерил обратную квадратичную зависимость только через 18 лет, а закон Гаусса появился на свет и того позже.
Закон Гаусса был проверен очень тщательно; для этого электрометр помещали внутрь большой сферы и наблюдали, отклонится ли стрелка, когда сферу зарядят до высокого напряжения. Результат всегда получался отрицательным. Если знать геометрию аппарата и чувствительность прибора, можно рассчитать наименьшее поле, которое еще доступно наблюдению. Из этого числа можно установить верхний предел отклонения показателя степени от двух. Если записать зависимость электростатической силы от расстояния в виде r-2+ε
, то можно определить верхнюю границу ε. Этим способом Максвелл узнал, что ε меньше 1/10000. Опыт был повторен и усовершенствован в 1936 г. Плимптоном и Лафтоном. Они обнаружили, что кулонов показатель отличается от 2 меньше чем на одну миллиардную.Это подводит нас к интересному вопросу: как точно выполняется закон Кулона в различных обстоятельствах? В только что описанных опытах измерялась зависимость поля от расстояния на расстояниях порядка десятков сантиметров. А что можно сказать о внутриатомных расстояниях, скажем внутри атома водорода, где, как мы считаем, электрон притягивается к ядру по тому же закону обратных квадратов? Конечно, для описания механической части поведения электрона нужна квантовая механика, но сила здесь — по-прежнему привычная электростатическая сила. В постановке задачи об атоме водорода известна потенциальная энергия электрона как функция расстояния от ядра, и тогда закон Кулона приводит к потенциалу, обратно пропорциональному первой степени расстояния. С какой точностью этот показатель известен на таких малых расстояниях? В итоге очень тщательных измерений относительного расположения уровней энергии водорода, проведенных в 1947 г. Лэмбом и Ризерфордом, нам теперь известно, что и на расстояниях порядка атомных, т. е. порядка ангстрема (10-8
см), показатель выдерживается с точностью до одной миллиардной.Такая точность измерений Лэмба и Ризерфорда оказалась возможной опять благодаря одной физической «случайности». Среди состояний атома водорода есть два таких, у которых энергии должны быть почти одинаковыми
А верен ли этот закон и на еще меньших расстояниях? В ядерной физике измерения показали, что на типично ядерных расстояниях (порядка 10-13