А теперь взгляните внимательнее! На самом-то деле мы решили задачу уже с новым условием: поверхность изогнутого проводника с заданным потенциалом помещена близ точечного заряда. Если наш металлический лист, уложенный на эквипотенциальную поверхность, замыкается сам на себя (или тянется очень далеко), то получается картина, рассмотренная в гл. 5, § 10, когда пространство делится на две области: одна внутри, другая снаружи замкнутой проводящей поверхности. Там мы пришли к выводу, что поля в этих двух областях совершенно не зависят друг от друга. Так что независимо от того, каково поле внутри замкнутого проводника, снаружи поле всегда одно и то же. Можно даже заполнить всю сердцевину проводника проводящим материалом. Выходит, нам удалось найти поле при конфигурации проводников и зарядов, изображенной на фиг. 6.9.
В пространстве вне проводника поле как раз такое, как у двух точечных зарядов (см. фиг. 6.8). Внутри проводника оно нуль. И, кроме того, электрическое поле, как и следовало ожидать, у самой поверхности проводника нормально к ней.
Итак, мы можем рассчитать поля на фиг. 6.9, вычисляя поле, созданное зарядом
В книгах можно найти длинные перечни решений задачи электростатики для гиперболических поверхностей и других сложных штук. Вас могло бы удивить, как это удалось рассчитать поля близ поверхностей столь ужасной формы. Но они были рассчитаны задом наперед! Кто-то решил простую задачу с фиксированными зарядами. А затем обнаружил, что появляются некоторые эквипотенциальные поверхности новой формы, ну и написал работу, в которой указал, что поля снаружи проводника такой формы могут быть изображены так-то и так-то.
§ 8. Точечный заряд у проводящей плоскости
В качестве простейшего применения этого метода используем плоскую эквипотенциальную поверхность
Так мы узнали суммарное поле, но что можно сказать о том, каковы те
Рассмотрим точку поверхности на расстоянии ρ от той точки, которая расположена прямо против положительного заряда (см. фиг. 6.10).
Электрическое поле в этой точке нормально к поверхности и направлено внутрь нее. Составляющая поля
К ней мы должны добавить электрическое поле, созданное отрицательным зеркальным зарядом. Это удвоит нормальную составляющую (и уничтожит все прочие), так что плотность заряда σ в произвольной точке поверхности будет равна
Проинтегрировав σ по всей поверхности, мы сможем проверить наши расчеты. Мы должны получить весь наведенный заряд, т. е. -
Еще один вопрос: действует ли на точечный заряд сила? Да, потому что наведенные на плоскости отрицательные заряды должны его притягивать. А раз мы знаем, каковы эти поверхностные заряды [по формуле (6.29)], то можем с помощью интегрирования подсчитать силу, действующую на наш положительный заряд. Но мы ведь знаем также, что сила, действующая на него, в точности такая, какой она была бы, если бы вместо плоскости был один только отрицательный зеркальный заряд, потому что поля поблизости от них в обоих случаях одинаковы. Точечный заряд тем самым испытывает силу притяжения к плоскости, равную