Здесь, пожалуй, уместно сделать общее замечание, касающееся векторного анализа. Хотя его теоремы и доказаны в общем виде, однако, приступая к расчетам и анализу какой-либо задачи, следует с толком выбирать направление осей координат. Вспомните, что когда мы вычисляли потенциал диполя, то ось выбиралась не как попало, а мы направили ее по оси диполя. Это намного облегчило нашу задачу. Потом уже уравнения были переписаны в векторной форме и сразу перестали зависеть от выбора системы координат. Теперь стало возможным выбирать какую угодно систему координат, зная, что формула отныне всегда будет справедлива. Вообще нет смысла вводить произвольную систему координат, где оси направлены под каким-то сложным углом, если можно в данной задаче выбрать систему получше, а уже в самом конце выразить результат в виде векторного уравнения. Так что старайтесь использовать то преимущество векторных уравнений, что они не зависят ни от какой системы координат.
С другой стороны, если вы хотите подсчитать дивергенцию какого-то вектора, то вместо того, чтобы смотреть на ∇
·Е и вспоминать, что это такое, лучше расписать это в видеЕсли вы затем вычислите по отдельности
§ 4. Дипольный потенциал как градиент
Мы хотели бы теперь отметить любопытное свойство формулы диполя (6.13). Потенциал можно записать также в виде
Действительно, вычислив градиент 1/r, вы получите
и (6.16) совпадет с (6.13).
Как мы догадались об этом? Мы просто вспомнили, что er
/r2 уже появлялось в формуле дляСуществует и
(Множитель 1/4πε0
опустим, а в конце мы его можем снова вставить.) Если заряд +Иначе говоря,
где Δz означает то же, что и d/2. Беря φ0
=q/r, мы получаем для потенциала положительного зарядаПовторяя те же рассуждения с потенциалом отрицательного заряда, можно написать
А общий потенциал—просто сумма (6.17) и (6.18):
При других расположениях диполя смещение положительного заряда можно изобразить вектором Δr+
, а уравнение (6.17) представить в видегде Δr впоследствии надо будет заменить на d/2. Завершая доказательство так, как это было сделано выше, мы приведем уравнение (6.19) к виду
Это то же уравнение, что и (6.16). Надо только заменить qd на р и вставить потерянный по дороге множитель 1/4πε0
. Взглянув на это уравнение по-иному, видим, что дипольный потенциал (6.13) можно толковать какгде Ф0
=1/4πε0r — потенциалХотя потенциал данного распределения зарядов всегда может быть найден при помощи интегрирования, иногда можно сберечь время, применив какой-нибудь хитроумный прием. Например, на помощь часто приходит принцип наложения. Если нам дано распределение зарядов, которое можно составить из двух распределений с уже известными потенциалами, то искомый потенциал легко получить, просто сложив уже известные между собой. Наш вывод формулы (6.20) — один из примеров применения этого приема.