Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Для данного множества А, которое содержится в другом множестве В, дополнением множества А до В называют множество, состоящее из элементов, принадлежащих В, но не А. Например, дополнением множества гласных {а, е, i, о, и} английского алфавита является множество согласных. Рассмотрим операции объединения и пересечения. Для данных множеств X и Y их пересечение X  Y определяется как множество элементов, одновременно принадлежащих X и Y. Например, если X — множество четных чисел 0, 2, 4, 6, 8, 10…, а Y — множество чисел, кратных трем, 0, 3, 6, 9, 12, 15 …, то чтобы найти их пересечение, нужно определить их общие элементы: ими будут 0, 6, 12, 18…, то есть числа, кратные шести. Объединением множеств X U Y называется множество, которому принадлежат все элементы X и все элементы Y. В предыдущем примере первыми элементами объединения

X и Y будут 0, 2, 3, 4, 6, 8, 9…

Похожесть символов, обозначающих пересечение двух множеств () и конъюнкцию двух высказываний (), а также символов, обозначающих объединение двух множеств (U) и дизъюнкцию двух высказываний (V), вовсе не случайна. Если сопоставить свойствам Р и Q множества чисел, обладающих этими свойствами, например X и Y, то числа, обладающие свойствами Р и одновременно, будут элементами пересечения множеств X  Y, а числа, обладающие свойством Р или Q, то есть как минимум одним из этих двух свойств, будут принадлежать объединению множеств X U Y. Дополнение множества, в свою очередь, соответствует отрицанию высказывания. Для представления дополнений, объединений и пересечений множеств очень удобно использовать диаграммы, созданные британским математиком и философом Джоном Венном в 1880 году. С их помощью можно доказать, что конъюнкция свойств Р и Q равносильна отрицанию дизъюнкции отрицаний Р и Q

, иными словами, Р  Q¬(¬Р V ¬Q). Это свойство позволяет выразить  через V и ¬.



Рис. 1. Пересечение двух множеств, соответствующее конъюнкции P  Q.



Рис. 2.Объединение двух множеств, соответствующее дизъюнкции Р V Q.



Рис. 3.Дополнение множества, соответствующее отрицанию ¬Р.


Диаграммы Венна, на которых представлены операции пересечения (рис. 1), объединения (рис. 2) и дополнения (рис. 3) множеств.


Сделав замечание о том, как представляются выражение «для всех» и конъюнкция высказываний (логическое «и»), рассмотрим, как переводятся в формальную систему арифметики некоторые аксиомы Пеано. Первая аксиома Пеано звучит так: «Ноль есть натуральное число». Эта аксиома не требует перевода, так как мы включили символ 0 в созданный нами язык. Перейдем ко второй аксиоме: «Каждое натуральное число имеет число, следующее за ним». В этой аксиоме фигурируют две переменные: рассматриваемое натуральное число, которое мы будем обозначать через х, и следующее за ним, которое будем обозначать через у. Вспомним, что число, следующее за данным, записывается с помощью буквы s, которая ставится перед этим числом, и выражается формулой у = sx, то есть «у равно числу, следующему за х». Следующий шаг заключается в том, что высказывание «каждое натуральное число» равносильно высказыванию «для всех натуральных чисел», и в этом контексте слово «имеет» означает «существует». Таким образом, аксиома принимает вид: «Для всякого натурального числа х существует натуральное число у такое, что у = sx». Если бы мы могли использовать символ , то на этом можно было бы остановиться: аксиома записывалась бы как xy

(y = sx) — скобки мы использовали, чтобы выделить свойство, которым обладают числа х и у. Так как этот символ применить нельзя, нужно выполнить еще одно действие: так как «для всякого натурального числа х существует натуральное число у такое, что у = sx» равносильно «не существует натурального числа х такого, что для него не существует натурального числа у такого, что у = sx», и вторая аксиома Пеано будет записываться так: ¬ху (уsx). После столь подробных объяснений читатель может самостоятельно убедиться в том, что третья аксиома Пеано, «0 не следует ни за каким натуральным числом», соответствует выражению ¬х (sx = 0).

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука