Читаем От абака к цифровой революции полностью

От абака к цифровой революции

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.

Бизенц Торра

Математика18+

БизенцТорра

«Мир математики»

№ 15

«От абака к цифровой революции.

Алгоритмы и вычисления»

Предисловие

Алгоритм — это способ автоматизации вычислений, который позволяет получить определенный результат на основе исходных данных и посредством выполнения действий в заданном порядке за конечное число этапов. Следовательно, алгоритм позволяет решить не одну конкретную задачу, а целый ряд задач одного класса, то есть задач с похожими условиями, вне зависимости от исходных данных. На бытовом уровне алгоритмом можно считать формулу. Таким образом, алгоритм — это математический инструмент, но само его определение подсказывает, почему алгоритмы стали основой информатики.

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира. По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась тогда, когда зародились вычисления.

Вычисления и технологии связаны между собой с древних времен. Вычислительные инструменты всегда были продуктом технологий и способов счисления, которые использовались в тех или иных культурах в тот или иной период. Древнеегипетские методы вычислений и римские устройства для счета, например абак, подчинялись правилам вычислений, которые были приняты в этих культурах. Это влияние было взаимным: римская система счисления сохранилась вплоть до Средних веков благодаря широкому применению абака. Аналогичным образом использование бумаги способствовало распространению арабских цифр. Венцом этой эволюции являются информатика и компьютеры, которые создавались с одной целью: разработать всё более и более мощные устройства для выполнения всё более и более сложных вычислений.

Число 71 прекрасно иллюстрирует эволюцию вычислений и их взаимосвязь с технологиями. Еще в Месопотамии и Древнем Египте предпринимались попытки вычислить 71 с помощью доступных в то время приспособлений. Были получены удивительные результаты: уже Архимед в III веке до н. э. рассчитал приближенное значение 71 с невероятно малой погрешностью в 0,002. С развитием информатики вычислялись всё новые и новые знаки 71: в настоящее время известно несколько триллионов знаков этого числа. Были созданы алгоритмы, позволяющие вычислить любой отдельный знак числа 71.

В этой книге рассказывается история алгоритмов и вычислений, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир. Эта удивительная история помогает нам понять, почему мир, в котором мы живем, выглядит именно так.

Глава 1

Начало эпохи вычислений. Позиционные системы счисления

Методы вычислений развивались на протяжении многих тысяч лет.

Этот процесс изначально проходил очень медленно, и ему предшествовало развитие систем счисления. Подобно многим другим проявлениям культуры, вычисления и системы счисления возникли в разных частях Земли. Изначально они не были связаны между собой, но затем широко распространились и оказали взаимное влияние друг на друга. Различные системы счисления были известны в Месопотамии, Древнем Египте, Древней Греции, Риме, Индии и других государствах. Им на смену пришли арабские цифры и позиционная система счисления, появление которой произвело переворот, сравнимый с тем, что произвела теория Коперника в астрономии.


Происхождение систем счисления


Цифры и системы счисления появились в древности. У разных культур они различались, а где-то, например у амазонского народа пирахан, цифры отсутствовали вовсе.

Старейшие свидетельства использования чисел — кости с отметками, найденные на археологических раскопках. Древнейшая из подобных находок — кость бабуина, обнаруженная в горах Лебомбо африканского государства Свазиленд во время раскопок в 1973 году, возраст которой оценивается в 35 000 лет. На этой кости нанесено 29 отметок. Считается, что она использовалась для подсчета фаз луны; возможно также, что она применялась в качестве календаря менструального цикла. Эта кость напоминает палочки, которые и поныне в ходу у бушменов Намибии.

Другое примечательное свидетельство — волчья кость, найденная в 1937 году в Вестонице (Моравия). На эту кость нанесено 55 отметок, объединенных в пять групп по пять отметок. После отметки под номером 25 нанесена одна дополнительная. Эта кость является артефактом ориньякской культуры, а ее возраст — порядка 30000 лет. Поблизости от нее была найдена голова мраморной статуи Венеры.

Следующий выдающийся экземпляр — так называемая кость Ишанго, найденная в Конго в 1960 году, возраст которой оценивается не менее чем в 20000 лет.



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика