Несколько дней назад произошло грустное, но неизбежное событие: прекратила работу космическая обсерватория «Гершель». Она была запущена в космос 14 мая 2009 года и должна была проработать около трёх лет, однако действительность, что с ней бывает нечасто, превзошла самые оптимистические сценарии, и охладитель иссяк лишь 29 апреля, подарив проекту несколько лишних месяцев наблюдений.
Обсерватория «Гершель» работала в дальнем инфракрасном (ИК) и субмиллиметровом диапазонах, то есть способна была принимать свет с длинами волн от 55 до 672 микрон. Этот диапазон с Земли либо не виден совсем, либо виден очень плохо (в нескольких окнах прозрачности), что обидно, ибо именно на эти длины волн приходится максимум излучения холодного (десятки кельвинов) межзвёздного и околозвёздного вещества, в частности максимум теплового излучения практически всей космической пыли. Кроме того, субмиллиметровый диапазон богат спектральными линиями, принадлежащими атомам, ионам и многочисленным молекулам, также пребывающим в межзвёздном и околозвёздном пространстве.
О достижениях «Гершеля» сказано в последние дни много, и я это пересказывать не буду: что и говорить, обсерватория замечательная и результаты уникальные. Напишу лучше о проблеме, которую «Гершель» не только не помог решить, но, скорее, даже усугубил. Это проблема кислорода, третьего по распространённости элемента во Вселенной. Точнее, он третий по содержанию в звёздах, но, поскольку звёзды образуются из межзвёздного вещества, логично предположить, что и в нём кислорода должно быть много. Остаётся понять, в какой именно форме, в составе какого вещества существует межзвёздный кислород.
Во времена зарождения астрохимии, то есть в 1970-е годы, предполагалось, что основным резервуаром кислорода в межзвёздной среде (МЗС) являются молекулы воды и O2
, то есть те, что мы вдыхаем и пьём на Земле. Цепочка реакций, ведущих к в этим соединениям, очень проста. Сначала космические лучи ионизуют молекулуПроверить этот вывод в наземных наблюдениях сложно, так как сильные линии воды и O2
, попадающие в субмиллиметровый диапазон, не доходят до поверхности Земли, поскольку поглощаются этими же молекулами в земной атмосфере. Наблюдатели пытались обойти эту проблему при помощи различных ухищрений, например, искали излучение изотопомера 16O18O. Изотопомеры, то есть молекулы, в которых один или несколько атомов замещены менее распространёнными изотопами, зачастую обладают линиями, отсутствующими у варианта с основными изотопами, которые легче наблюдать. Линии молекулы кислорода искали также в далёких галактиках, надеясь, что красное смещение сдвинет их в окна прозрачности земной атмосферы. Но наземные попытки оказались тщетными, и это уже означало, что о содержании молекулярного кислорода выше 10-5 речи не идёт.Первый опыт космического поиска O2
также оказался неудачным: субмиллиметровый телескоп SWAS в начале 2000-х годов линий молекулярного кислорода тоже не увидел, наложив на содержание этой молекулы ещё более строгое ограничение — не более 10-7. Достоверно молекула O2 была обнаружена в МЗС (точнее, в области звёздообразования ρ Змееносца) при помощи космического телескопа «Один» только в 2005 году (я традиционно указываю не год наблюдения, а год публикации). Её содержание оказалось равным 5 10-8, то есть на порядки ниже теоретических предсказаний.Незначительно лучше оказалась и ситуация с водой. Правда, у воды есть линия на длине волны 1,35 см, легко наблюдаемая с Земли, поэтому сам факт наличия воды в МЗС сомнений никогда не вызывал. Но о количестве воды эта линия мало что может сказать, поскольку возникает в специфических условиях. «Обычные» линии холодной межзвёздной воды также попадают в субмиллиметровый диапазон и требуют космических наблюдений. Первую информацию о количестве воды в межзвёздных газовых облаках принёс SWAS, и оно также оказалось существенно ниже модельных предсказаний.