Дети узна
Впрочем, став старше, мы начинаем замечать у чисел и слабые стороны. Да, они прекрасно экономят время, но немалой платой за это становится их абстрактность. Число шесть более эфемерно, чем «шесть рыбок» — именно потому, что оно универсально. Шесть может быть чего угодно: шесть тарелок, шесть пингвинов, шесть раз произнесенное слово «рыбка». Число создает некую неявную общность между приведенными примерами.
Рассматриваемые таким образом числа начинают казаться мистическими. Они, очевидно, существуют в некоем идеальном мире Платона, где-то над действительностью, и в этом смысле больше походят на другие возвышенные понятия (например, истина и справедливость) и меньше — на обычные объекты повседневной жизни. Чем активнее вы о них думаете, тем дальше они удаляются от реальности. Как появились числа? Изобрели ли их люди? Или лишь обнаружили?
Еще один нюанс заключается в том, что числа (как и все математические идеи) живут своей жизнью1. Они нам неподвластны, хотя и присутствуют в наших умах. Даже определив, что мы под ними понимаем, мы не можем предсказать, как они себя поведут. Они подчиняются определенным законам и имеют определенные свойства, индивидуальные особенности и способы объединения друг с другом, и мы ничего не в силах с этим поделать, кроме как наблюдать и пытаться понять. В этом смысле они похожи на атомы и звезды: объекты, которые также существуют по своим (неподконтрольным нам) законам и находятся вне зоны нашего сознания.
Эта двойственная природа чисел — принадлежность к небесам и земным делам, — возможно, их самая парадоксальная черта и особенность, которая делает их настолько полезными. Это то, что имел в виду физик Юджин Вигнер, когда писал о
Для того чтобы прояснить, что я имею в виду под жизнью чисел и их поведением, которое мы не можем контролировать, давайте вернемся в отель «Мохнатые лапы». Предположим, что Хамфри как раз собрался передать заказ, но тут ему неожиданно позвонили пингвины из другого номера и тоже попросили такое же количество рыбы. Сколько раз Хамфри должен прокричать слово «рыбка» после получения двух заказов? Если бы он ничего не узнал о числах, то ему пришлось бы кричать столько раз, сколько всего пингвинов в обеих комнатах. Или, используя числа, он мог объяснить повару, что ему нужно шесть рыбок для одного номера и шесть для другого. Но то, что ему действительно необходимо, представляет собой новую концепцию — сложение. Как только он его освоит, он с гордостью скажет, что ему нужно шесть плюс шесть (или, если он позер, двенадцать) рыбок.
Это такой же творческий процесс, как и тот, когда мы только придумывали числа. Так же как числа упрощают подсчет по сравнению с перечислением по одному, сложение упрощает вычисление любой суммы. При этом тот, кто производит подсчет, развивается как математик. По-научному эту мысль можно сформулировать так: использование правильных абстракций приводит к более глубокому проникновению в суть вопроса и большему могуществу при его решении.
Вскоре, возможно, даже Хамфри поймет, что теперь он всегда может производить подсчет.
Однако, несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение,
2. Каменная арифметика
Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).
Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.
С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики3. Тем не менее, она так же естественна, как и любопытство ребенка4.
В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков: