Группа считается
Главным достижением стала теория линейных подстановок Жордана. Здесь преобразования, производимые с группой, не являются перестановками конечного множества: это линейные изменения для конечного списка переменных. Например, три переменные
где
Также в 1869 г. Жордан развил свою версию теории Галуа и включил ее в свой трактат. Он доказал, что уравнение разрешимо тогда и только тогда, когда разрешима сама эта группа. Это означает, что все ее элементарные компоненты имеют простой порядок. Жордан применил теорию Галуа к геометрическим задачам.
Симметрия
Четырехтысячелетний поиск решения прекратился, когда Руффини, Абель и Галуа доказали, что решение в радикалах невозможно. И хотя результат оказался отрицательным, сам факт исследования серьезно повлиял на дальнейшее развитие и математики, и науки в целом. Это стало возможно благодаря тому, что метод, использованный для доказательства невозможности, оказался центральным в математическом понимании симметрии, а та, в свою очередь, стала неотъемлемой частью математики и науки вообще.
В наше время теория групп неразрывно связана с математикой и широко применяется в науке. В частности, она появляется в теории формирования узоров в самых разных отраслях науки. Одним из примеров такого использования может быть реакционно-диффузная модель, предложенная Аланом Тьюрингом в 1952 г. как одно из возможных объяснений появления симметричных пятен на шкурах животных. В уравнениях модели набор химических веществ может создать диффузию в некоторой области пространства, и эти вещества также вступают в реакции, производя новые. Тьюринг предположил, что некоторые из этих процессов могли быть заложены как образец узора в развивающемся зародыше, что позже может выразиться в образовании пигментов и пятен на шкуре взрослой особи.
Для простоты предположим, что эта область является плоскостью. Тогда уравнения будут симметричными для всех обычных движений. Единственное решение уравнений (которое симметрично для всех этих движений) однородно, одинаково везде. Для животного это означает, что у него не будет каких-то особых отметин, везде один цвет. Однако однородность может оказаться нестабильной, и в таком случае конечное видимое решение будет симметричным для некоторых движений, но не для всех остальных. Этот процесс называется деформацией,
Математическая модель и рыба: и там, и там узоры Тьюринга