Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Типичный узор, нарушающий симметрию на плоскости, состоит из параллельных полос. Еще один – повторяющиеся наборы пятен. Возможны и более сложные. Любопытно, что полосы и пятна – типичные узоры на шкурах животных. Хотя истинный биологический процесс, включающий генетические эффекты, намного сложнее построений Тьюринга, лежащий в его основе механизм нарушения симметрии должен быть очень близок к математической модели.

Последствия этого трудно переоценить. Теория групп привела к более абстрактному взгляду на алгебру и заодно на математику. Хотя много ученых-практиков поначалу активно противостояли этому, в итоге стало очевидно, что абстрактные методы зачастую более эффективны, чем конкретные, и противодействие исчезло само по себе. Теория групп также научила исследователей ценить отрицательные результаты и понимать, что упорные поиски доказательств иногда приводят к грандиозным открытиям. Представьте себе, что было бы, если бы математики просто приняли на веру, что уравнения пятой степени не решаются, не потрудившись найти доказательства. Тогда не появилась бы на свет теория групп, объясняющая, почему

их нельзя решить. Выбери математики этот путь, смирись с невозможностью решений – и сама математика, и наука в целом были бы бледным подобием того, что есть сейчас.

Вот почему математикам всегда так важно доказательство.

Глава 14. Взросление алгебры

Числа прокладывают путь структурам

К 1860 г.

теория групп перестановок была уже хорошо развита. Теория инвариантов – алгебраических выражений, которые не меняются, когда происходят некие изменения с переменными, – привлекла внимание к различным бесконечным множествам преобразований, таким как проективная группа всех проекций пространства. В 1868 г. Камиль Жордан изучал группы движений в трехмерном пространстве, и в ходе его исследований два направления слились в одно.

Изощренные концепции

Начала появляться новая алгебра, для которой объектами изучения стали не неизвестные числа, а более изощренные концепции: перестановки, преобразования, матрицы. Прошлогодние процессы с наступлением нового года уходили «в архив». Правила алгебры, долгое время остававшиеся незыблемыми, всё чаще нуждались в изменении, чтобы удовлетворить нужды новых структур. Наряду с группами математики взялись за изучение структур так называемых колец и полей, не говоря уже о разных новых видах алгебр.

Стимулы для этого изменения взгляда на алгебры пришли из уравнений в частных производных, механики и геометрии. Это обусловило развитие групп Ли и алгебры Ли. Другим источником вдохновения была теория чисел: здесь алгебраические числа можно было использовать для решения диофантовых уравнений, понимания законов взаимности и даже атак на Великую теорему Ферма. И кульминацией всего происходящего стало доказательство Великой теоремы Ферма Эндрю Уайлсом в 1995 г.

Ли и Клейн

В 1869 г. норвежский математик Софус Ли подружился с немецким математиком Клейном. Они оба интересовались линейной геометрией – ответвлением проективной геометрии, открытым Юлиусом Плюккером. Ли высказал очень оригинальную идею: мол, теория Галуа для алгебраических уравнений должна иметь аналог для дифференциальных уравнений. Алгебраическое уравнение может быть решено в радикалах, только если обладает необходимыми свойствами симметрии, – это так называемая разрешимая группа Галуа. Ли предположил, что и дифференциальное уравнение может быть решено классическими способами, только если оно остается неизменным в непрерывном семействе преобразований. Ли и Клейн работали над вариантами этой идеи в 1869–1870 гг. Кульминацией стало описание геометрии через инварианты групп, данное Клейном в 1872 г. в его «Эрлангенской программе».

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература