Августа Ада была дочерью поэта лорда Байрона и Анны Милбенк. Ее родители расстались через месяц после рождения девочки, и она больше никогда не видела отца. Ребенком она уже показала способности к математике; в отличие от своих современников, леди Байрон сочла это отличным упражнением для развития ума своей дочки и поощряла ее в этом увлечении. В 1833 г. Ада познакомилась с Чарльзом Бэббиджем на званом обеде, и очень скоро, побывав на демонстрации его прототипа аналитической машины, девушка нашла ее восхитительной и моментально разобралась в ее устройстве. Она стала графиней Лавлейс, когда в 1838 г. ее муж получил титул графа.
В 1843 г. к своему переводу статьи Луиджи Менабреа «Заметки об аналитической машине Чарльза Бэббиджа» Ада добавила небольшое приложение, впоследствии ставшее образцом программ, разработанных ею собственноручно. Она писала, что «отличительной особенностью аналитической машины… является использование в ней принципа управления с помощью перфокарт, изобретенного Жаккардом для изготовления самых сложных узоров для парчовых тканей. Можно сказать, что аналитическая машина сплетает алгебраические формулы так же, как ткацкий станок Жаккарда – цветы и листья».
В 36 лет у женщины развился рак матки, и после долгих мучений она умерла от кровопускания на руках у своих врачей.
Вторым важным приложением численных методов стало решение дифференциальных уравнений. Предположим, мы решаем уравнение
и нам дано, что
где ε очень мала. Тогда аппроксимация дифференциального уравнения принимает вид:
Начиная с
Однако метод Эйлера оказался слишком прост для ученых, и пришлось изобрести множество улучшений. Самым известным стал целый класс методов Рунге – Кутты, названный в честь немецких математиков Карла Рунге и Мартина Кутты, впервые предложивших их в 1901 г. Один из них, так называемый метод Рунге – Кутты четвертого порядка, широко используется в инженерии, прикладной и теоретической математике.
Нужды современной нелинейной динамики породили несколько сложнейших методов, позволяющих избежать накопления ошибок даже в длительных временн