Читаем УТРО МАГОВ полностью

Пятилетним его отдали в школу. И сразу же его ум вызвал удивление. Казалось, он уже знал все, чему его учили. Ему была дана стипендия для обучения в лицее Кумбаконана, где он вызвал восхищение своих соучеников и преподавателей. Ему 15 лет. Один из его друзей добыл для него через местную библиотеку работу под названием «Свод элементарных выводов чистой и прикладной математики». Эта двухтомная работа – меморандум, составленный Джорджем Шубриджем, профессором из Кембриджа. В ней содержится перечисление и краткое изложение около 6000 теорем без доказательств. Действие, произведенное на молодого индийца этой книгой, было фантастическим. Мозг Рамануджана неожиданно стал функционировать совершенно непонятным для нас способом. Он доказал все теоремы, а потом, исчерпав геометрию, принялся за алгебру. Рамануджан рассказывал позднее, что богиня Намагири явилась ему, чтобы объяснить самые трудные расчеты. В 18 лет он провалился на экзаменах, потому что был слаб в английском языке, и его лишили стипендии. Самостоятельно, без специального образования он продолжал свои математические исследования. Вначале он превзошел все знания в этой области по состоянию на 1880 г. и смог отбросить работу проф. Шубриджа. Он пошел дальше и сам воссоздал, а потом и превзошел все математические достижения цивилизации – исходя только из меморандума, причем неполного. История человеческой мысли не знает другого такого примера. Даже сам Галуа – и тот работал не один: он занимался в Политехнической школе, которая в то время была лучшим математическим центром мира. Он имел доступ к тысячам работ. Он находился в контакте с первоклассными учеными. Что же до Рамануджана – то еще никогда человеческий ум не поднимался так высоко, имея в своем распоряжении столь ничтожные средства.

В 1909 г., после многих лет уединенной работы и нищеты, Рамануджан женился. Он искал службу. Его рекомендовали местному сборщику налогов, Рамачандре Рао, просвещенному любителю математики. Он оставил нам рассказ об их беседе: «Маленький человек, нечистоплотный, небритый, с глазами, каких я никогда не видел, вошел в мою комнату с потрепанным блокнотом в руках. Он говорил мне о чудесных открытиях, бесконечно превосходящих мои знания, и я спросил, что я могу для него сделать. Он сказал мне, что хотел бы зарабатывать только на пищу, чтобы иметь возможность продолжать свои исследования».

Рамачандра Рао предложил ему совсем маленькую пенсию. Но Рамануджан слишком горд. В конце концов ему нашли службу – жалкую должность бухгалтера в мадрасском порту.

В 1913 г. его убедили вступить в переписку с крупным английским математиком Г. Гарди, в то время профессором Кембриджа. Он написал ему и послал с той же почтой 120 доказанных им геометрических теорем. Гарди написал в ответ: «Эти заметки могли быть написаны только математиком самого высшего класса. Никакой похититель идей, никакой шутник, даже гениальный, не мог бы понять таких высоких абстракций». Он предложил Рамануджану немедленно приехать в Кембридж. Но мать гения воспротивилась этому по религиозным соображениям. И снова богиня Намагири разрешила трудную проблему. Она явилась старой даме, чтобы убедить ее, что сын может отправиться в Европу без опасностей для своей души, и показала ей во сне Рамануджана, сидящим в большом амфитеатре Кэмбриджа среди англичан, восхищающихся им.

В конце 1913 г. индиец уехал. В течение пяти лет он работал и чудесным образом продвинул вперед математику. Он был избран членом Королевского Научного Общества и назначен профессором в Тринити-колледже. В 1918 г. он заболел туберкулезом и вернулся в Индию, чтобы умереть там в возрасте 32 лет.

У всех, кто с ним общался, остались неизгладимые впечатления. Он жил исключительно среди чисел. Гарди посетил его в больнице, упомянув, что добрался на такси. Рамануджан спросил номер машины: 1729. «Какое прекрасное число! – воскликнул он. – Это самое маленькое число из всех, составляющих двойную сумму двух кубов!» В самом деле, 1729 = 10Е3 + 9Е3, а также 12Е3 + 1Е3. Гарди потребовалось целых шесть месяцев для доказательства этого, а та же задача для четвертой степени не решена до сих пор.

История Рамануджана принадлежит к числу невероятных, однако, она абсолютно достоверна. Невозможно изложить суть его открытий простыми словами. Речь идет о наиболее таинственных особенностях понятия числа, и в частности «целых чисел».

Мало известно о том, что привлекало Рамануджана помимо математики. Он почти не интересовался искусством и литературой, но увлекался удивительным. В Кембридже он составил для себя небольшую библиотеку и картотеку всякого рода явлений, непонятных для разума.


История вторая: Кейс Работа Иосифа Милларда о Кейсе издана «Кейс фаундейшн», этюд Джона В.Кемпбелла в «Аустоундинг С.Ф.», март 1957, и Томас Сугрю «Эдгар Кейс: Книга о нем».

Перейти на страницу:

Похожие книги

История политических учений. Первая часть. Древний мир и Средние века
История политических учений. Первая часть. Древний мир и Средние века

  Бори́с Никола́евич Чиче́рин (26 мая(7 июня) 1828, село Караул, Кирсановский уезд Тамбовская губерния — 3 (17) февраля1904) — русский правовед, философ, историк и публицист. Почётный член Петербургской Академии наук (1893). Гегельянец. Дядя будущего наркома иностранных дел РСФСР и СССР Г. В. Чичерина.   Книга представляет собой первое с начала ХХ века переиздание классического труда Б. Н. Чичерина, посвященного детальному анализу развития политической мысли в Европе от античности до середины XIX века. Обладая уникальными знаниями в области истории философии и истории общественнополитических идей, Чичерин дает детальную картину интеллектуального развития европейской цивилизации. Его изложение охватывает не только собственно политические учения, но и весь спектр связанных с ними философских и общественных концепций. Книга не утратила свое значение и в наши дни; она является прекрасным пособием для изучающих историю общественнополитической мысли Западной Европы, а также для развития современных представлений об обществе..  Первый том настоящего издания охватывает развитие политической мысли от античности до XVII века. Особенно большое внимание уделяется анализу философских и политических воззрений Платона и Аристотеля; разъясняется содержание споров средневековых теоретиков о происхождении и сущности государственной власти, а также об отношениях между светской властью монархов и духовной властью церкви; подробно рассматривается процесс формирования чисто светских представлений о природе государства в эпоху Возрождения и в XVII веке.

Борис Николаевич Чичерин

История / Политика / Философия / Образование и наука