доказав на его основании, что результат неопределенности в положении (
Aq) и импульсе (Ар) должен всегда быть больше, чем h. Тот же самый принцип неопределенности применим к любой паре так называемых сопряженных переменных, которые перемножаются, давая в результате действие, например h. Действие имеет размерность энергия х время, и другой очень важной парой подобных переменных являются энергия (Е) и время (t ). Гейзенберг утверждал, что классические понятия повседневного мира все еще существовали в микромире, но применять их можно было только в ограниченном виде, обусловленном принципом неопределенности. Чем более точно мы знаем положение частицы, тем менее точно мы знаем ее импульс - и наоборот.
Смысл неопределенности
В 1927 году эти поразительные выводы были опубликованы в Zeitschrift
fur Physik, однако, хотя теоретики вроде Дирака и Бора, уже знакомые с новыми уравнениями квантовой механики, сразу же осознали их значение, для многих экспериментаторов утверждение Гейзенберга стало стимулом к дальнейшим исследованиям. Они думали, что он подразумевал, будто их эксперименты недостаточно хороши, чтобы измерить одновременно и положение частицы, и ее импульс, а потому старались разработать опыты, которые доказали бы его заблуждение. Однако все было тщетно, поскольку Гейзенберг имел в виду совершенно иное.Это недопонимание возникает и сегодня - частично из-за того, как зачастую преподается идея о неопределенности. Сам Гейзенберг, выражая мысль, использовал идею о наблюдении за электроном. Мы можем видеть вещи, лишь смотря на них, что требует отражения от них фотонов света, которые затем попадают в наши глаза. Фотон не сильно воздействует на объект вроде дома, поэтому мы не ожидаем, что окажем на дом какое-либо воздействие, если будем смотреть на него. Однако в случае с электроном все обстоит иначе. Во-первых, поскольку электрон невероятно мал, чтобы хотя бы увидеть его, мы вынуждены использовать коротковолновую электромагнитную энергию (с помощью экспериментального оборудования). Такие гамма-лучи обладают очень большой энергией, и любой отражающийся от электрона фотон гамма-излучения, который может быть зарегистрирован нашим экспериментальным оборудованием, значительно изменяет положение и импульс электрона - если электрон находится в атоме, то одно лишь наблюдение за ним с использованием микроскопа на гамма-лучах способно выбить его из атома.
Все это верно и дает общее представление о невозможности точного измерения одновременно и положения электрона, и его импульса. В соответствии с фундаментальным уравнением квантовой механики принцип неопределенности показывает нам, что не существует такого объекта, как электрон, обладающий определенным импульсом и определенным положением.
Это имеет далекоидущие последствия. Как написал Гейзенберг в конце своей статьи в Zeitschrift
: «Мы в принципе не можем знать во всех деталях настоящее». Именно здесь квантовая теория отрывается от детерминизма классической физики. С точки зрения Ньютона, было бы возможно предсказать будущее, если бы мы знали положение и импульс каждой частицы во Вселенной. Для современного физика идея о таком точном предсказании бессмысленна, поскольку мы не можем в точности знать и положение, и импульс даже одной частицы. Такой же вывод можно сделать из любой другой версии уравнений - из волновой механики, из матриц Г ейзенберга, Борна и Йордана и чисел q Дирака, - хотя подход Дирака, который тщательно избегает любых физических параллелей с обычным миром, кажется наиболее адекватным. И правда, Дирак едва не открыл принцип неопределенности раньше Гейзенберга. В работе для Proceedings of the Royal Society, опубликованной в декабре 1926 года, он указал, что в квантовой теории невозможно ответить на любой вопрос, который предполагает использование численных значений и q, и р, хотя «ожидается, однако, что возможно ответить на вопросы, в которых численные значения присваиваются либо q, либо р».