К счастью, в этих экспериментах можно игнорировать многие особенности спина такой частицы, как электрон. Не имеет значения, что эта частица должна «обращаться вокруг своей оси» дважды, чтобы снова оказаться к нам той же стороной. Важным является то, что спин частицы определяет направление в пространстве, верх или низ, подобно тому как спин Земли определяет направление оси север - юг. Электрон может находиться лишь в двух возможных состояниях относительно постоянного магнитного поля: параллельно или антипараллельно ему, что соответствует «верху» и «низу» согласно произвольной договоренности. Пример Бома для ЭПР основывается на паре протонов, связанных друг с другом в конфигурацию, называемую синглетным состоянием. Суммарный угловой момент такой пары протонов всегда равен нулю, и мы можем представить молекулу, раскалывающуюся на такие частицы, которые летят в разные стороны. Каждый из тех двух протонов может обладать угловым моментом и спином, но их спин должен быть равным по величине и противоположным по направлению, чтобы сумма для пары оказывалась равной нулю, как в тот момент, когда они
были вместе59.
Это простое предсказание, на котором сходятся и квантовая теория, и классическая механика. Если известен спин одной из частиц пары, то известен также и спин второй, поскольку суммарный спин равен нулю. Но как измерить спин одной частицы? В классическом мире измерение легко. Поскольку мы рассматриваем частицы в трехмерном мире, нам нужно измерять три направления спина. Сложенные вместе, три компоненты (используя правила векторного сложения, которые я не буду описывать) дают общий спин. Однако в квантовом мире ситуация принципиально другая. Во-первых, измеряя одну компоненту спина, мы меняем другие компоненты, поскольку векторы спина являются комплементарными и не могут быть измерены одновременно, как и в случае с положением и импульсом частицы. Во-вторых, спин частицы вроде электрона или протона сам по себе квантуется. Если измерить спин в любом направлении, можно получить информацию только о направлении «вверх» или «вниз», иногда это записывают как +1 или -1. Измеряя спин в одном направлении, которое мы можем обозначить как ось 2, можно получить значение +1 (вероятность этого в эксперименте точно равна 50 %). Давайте теперь измерим спин в другом направлении, например по оси у. Какой бы ни получился ответ, давайте теперь вернемся назад и снова измерим спин в первом направлении - тот, который уже «известен». Повторите эксперимент много раз и посмотрите на получившиеся результаты. Выходит, что вне зависимости от того, измерили ли вы спин частицы в направлении % перед измерением в направлении/ и знали ли, что он был направлен «вверх», после у-измерения вы будете получать значение «вверх» для новых Л
-измерений только в половине случаев. Измерение дополнительного вектора спина восстановило квантовую неопределенность состояния, которое уже было измерено60.Так что же происходит, когда мы пытаемся измерить спин одной из двух наших разделившихся частиц? Можно считать, что по отдельности каждая частица подвержена случайным флуктуациям компонент своего спина, которые мешают любой попытке измерить целиком спин всей частицы. Но вместе две частицы имеют в точности равный и противоположный спин. Поэтому случайные флуктуации в спине одной частицы уравновешивают равные и противоположные «случайные» флуктуации компонент спина другой частицы. Как и в первоначальном примере ЭПР, частицы связаны друг с другом
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное