Однако вскоре после своего замечания Эйнштейн оставил попытки серьезно работать над квантовой теорией и принялся развивать общую теорию относительности. Когда в 1916 году он вернулся к квантовой полемике, он использовал уже другую логику квантовосветовой задачи. Его статистические идеи, как мы видели, помогли укрепить модель атома Бора и развили данное Планком описание излучения абсолютно черного тела. Вычисления того, как материя поглощает или испускает излучение, также объяснили, как импульс передается от излучения к материи, учитывая, что каждый квант излучения
Однако формулу импульса «частицы» света очень легко вывести и из специальной теории относительности. В теории относительности энергия (
Так как частица света не имеет массы покоя, это уравнение быстро сокращается и принимает вид:
или просто
Именно эта работа убедила самого Эйнштейна в реальности световых квантов. Называть частицу света «фотоном» предложили только в 1926 году (это предложение сделал Гилберт Льюис, работавший в Беркли, Калифорния), а в язык науки это слово вошло лишь после пятого Сольвеевского конгресса, темой которого в 1927 году были объявлены «Электроны и фотоны». Хотя в 1917 году Эйнштейн был одинок в своей вере в реальность того, что мы теперь называем фотонами, похоже, пришло время упомянуть следующее имя. Прошло еще шесть лет, прежде чем появилось неоспоримое прямое экспериментальное доказательство реальности фотонов, которое предоставил американский физик Артур Комптон.
Комптон с 1913 года работал с рентгеновскими лучами в нескольких американских университетах и Кавендишской лаборатории в Англии. После серии опытов, проведенных в 1920-х годах, он пришел к однозначному выводу, что взаимодействие рентгеновских лучей с электронами можно объяснить только в том случае, если в некотором роде представить рентгеновские лучи в виде частиц – фотонов. В ключевых экспериментах исследовалось, как электрон рассеивает рентгеновское излучение, или, говоря на языке частиц, как фотон с электроном взаимодействуют при столкновении. Когда рентгеновский луч ударяет электрон, тот приобретает энергию и импульс и улетает под углом в сторону. Сам фотон теряет энергию и импульс и улетает под другим углом, который можно рассчитать в соответствии с простыми законами физики частиц. Столкновение подобно воздействию, которое движущийся бильярдный шар оказывает на покоящийся шар, и перенос энергии происходит точно так же. Однако в случае с фотоном потеря энергии означает изменение частоты излучения на величину