Читаем В поисках кота Шредингера. Квантовая физика и реальность полностью

Однако вскоре после своего замечания Эйнштейн оставил попытки серьезно работать над квантовой теорией и принялся развивать общую теорию относительности. Когда в 1916 году он вернулся к квантовой полемике, он использовал уже другую логику квантовосветовой задачи. Его статистические идеи, как мы видели, помогли укрепить модель атома Бора и развили данное Планком описание излучения абсолютно черного тела. Вычисления того, как материя поглощает или испускает излучение, также объяснили, как импульс передается от излучения к материи, учитывая, что каждый квант излучения hv несет с собой импульс hv/c. Эта работа восходит к другой значительной статье 1905 года – о броуновском движении. Подобно тому как пылинки бомбардируются атомами газа или жидкости, так что их движение доказывает существование атомов, сами атомы бомбардируются «частицами» излучения абсолютно черного тела. Это «броуновское движение» атомов и молекул нельзя наблюдать напрямую, однако столкновения приводят к статистическим эффектам, которые могут быть измерены как свойства, например давление газа. Именно эти статистические эффекты Эйнштейн объяснил с позиции частиц излучения абсолютно черного тела, которые несут в себе импульс.

Однако формулу импульса «частицы» света очень легко вывести и из специальной теории относительности. В теории относительности энергия (E), импульс (p) и масса покоя (

m) частицы связаны простым уравнением:


Е2 = m2с4

+ р2с2.


Так как частица света не имеет массы покоя, это уравнение быстро сокращается и принимает вид:


Е2 = р2с2,


или просто р = Е/с. Может показаться удивительным, что Эйнштейну понадобилось так много времени, чтобы это заметить, но в те дни его мысли занимало иное, например общая теория относительности. Однако как только он провел эту параллель, связь статистических аргументов с теорией относительности явно добавила им веса. (С другой стороны, раз статистика показывает, что р = Е/с, можно утверждать, что следствием уравнений теории относительности становится нулевая масса покоя частицы света.)

Именно эта работа убедила самого Эйнштейна в реальности световых квантов. Называть частицу света «фотоном» предложили только в 1926 году (это предложение сделал Гилберт Льюис, работавший в Беркли, Калифорния), а в язык науки это слово вошло лишь после пятого Сольвеевского конгресса, темой которого в 1927 году были объявлены «Электроны и фотоны». Хотя в 1917 году Эйнштейн был одинок в своей вере в реальность того, что мы теперь называем фотонами, похоже, пришло время упомянуть следующее имя. Прошло еще шесть лет, прежде чем появилось неоспоримое прямое экспериментальное доказательство реальности фотонов, которое предоставил американский физик Артур Комптон.

Комптон с 1913 года работал с рентгеновскими лучами в нескольких американских университетах и Кавендишской лаборатории в Англии. После серии опытов, проведенных в 1920-х годах, он пришел к однозначному выводу, что взаимодействие рентгеновских лучей с электронами можно объяснить только в том случае, если в некотором роде представить рентгеновские лучи в виде частиц – фотонов. В ключевых экспериментах исследовалось, как электрон рассеивает рентгеновское излучение, или, говоря на языке частиц, как фотон с электроном взаимодействуют при столкновении. Когда рентгеновский луч ударяет электрон, тот приобретает энергию и импульс и улетает под углом в сторону. Сам фотон теряет энергию и импульс и улетает под другим углом, который можно рассчитать в соответствии с простыми законами физики частиц. Столкновение подобно воздействию, которое движущийся бильярдный шар оказывает на покоящийся шар, и перенос энергии происходит точно так же. Однако в случае с фотоном потеря энергии означает изменение частоты излучения на величину hv, передаваемую электрону. Чтобы получить полное объяснение этого эксперимента, необходимо воспользоваться обоими описаниями: как с точки зрения частиц, так и с точки зрения волн. Проведя опыты, Комптон обнаружил, что взаимодействие происходит в точном соответствии с этими описаниями: углы рассеяния, изменения длины волны и отскок электрона идеально соотносились с идеей о том, что рентгеновское излучение распространяется в форме частиц с энергией hv. Этот процесс теперь называется эффектом Комптона, и в 1927 году Комптон получил за свою работу Нобелевскую премию[18]. После 1923 года было признано, что фотоны являются частицами, которые обладают и энергией, и импульсом (хотя Бор некоторое время упорно работал над тем, чтобы найти альтернативное объяснение эффекта Комптона; он не сразу понял необходимость включения обоих объяснений – с позиции волн и с позиции частиц – в «хорошую» теорию света и считал теорию частиц конкурентом волновой теории, заключенной в его модели атома). Но многочисленные свидетельства волновой природы света никуда не исчезли. Как сказал Эйнштейн в 1924 году, «таким образом, теперь есть две теории света, обе незаменимые… без какой-либо логической связи».

Перейти на страницу:

Похожие книги

Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература