Читаем В поисках кота Шредингера. Квантовая физика и реальность полностью

Сперва давайте отвлечемся от квантового мира фотонов и электронов и посмотрим, что происходит в обычном мире. Легко заметить, как волны дифрагируют сквозь прорези, поместив весь эксперимент в сосуд с водой. Источником может служить любое устройство, ходящее вверх и вниз и создающее равномерные волны. Волны проходят через две прорези и формируют на детекторе равномерный рисунок гребней и впадин из-за интерференции между волнами, проходящими через каждую из прорезей. Если мы закроем одну из прорезей в стене, высота волн изменится простым и регулярным образом. Самые большие волны располагаются ближе всего к отверстию, на самом коротком расстоянии внутри сосуда, а по обе стороны амплитуда волн меньше. Та же картина обнаруживается, если мы закроем эту прорезь и откроем ту, что была закрыта до этого.


Рис. 8.3. Однако для электронов и фотонов эксперименты показывают, что распределение, когда обе прорези «открыты», не эквивалентно распределению, полученному путем сложения того, что мы видим от каждой прорези в отдельности.


Интенсивность волны, являющаяся мерой количества энергии, которую переносит волна, пропорциональна высоте или амплитуде Н2 и демонстрирует одинаковое распределение для каждой прорези по отдельности. Однако, когда открыты обе прорези, распределение становится более сложным. Действительно, существует большой пик интенсивности прямо напротив двух прорезей, но с каждой стороны от этого пика, где две серии волн гасят друг друга, интенсивность очень низка, и на экране наблюдается картина чередования максимумов и минимумов. Математически получается, что интенсивность от обеих прорезей является не суммой их интенсивностей по отдельности (суммой квадратов), а квадратом суммы двух амплитуд. Например, если амплитуды волн обозначить как Н и J, то их интенсивность I не равна

Н2 + J2, а задается выражением:


I = (H + J)2,


которое можно привести к виду:


I = Н2 + J2 + 2HJ.


Дополнительное слагаемое в этом выражении появляется ввиду интерференции двух волн и, учитывая тот факт, что Н и J могут быть как положительными, так и отрицательными, это в точности объясняет интерференционную картину гребней и впадин.

Если бы мы провели такой же эксперимент с использованием крупных частиц из обычного мира (Фейнман представил причудливый эксперимент с автоматом, пули которого проходят сквозь прорези в стене и попадают в ведра с песком, используемые в качестве детектора), мы не обнаружили бы никакого «интерференционного слагаемого». Мы обнаружили бы, выстрелив сквозь прорези огромное число раз, разное количество пуль в разных ведрах. При одной открытой прорези распределение пуль по «экрану» напоминало бы вариацию интенсивности водяных волн при одной открытой прорези. Но при обеих открытых прорезях распределение пуль в ведрах представляло бы собой простую сумму эффектов для двух отдельных прорезей: большая часть пуль сосредоточилась бы в зоне напротив прорезей, а в обе стороны от этого пика расходились бы плавные хвосты без вызванных интерференцией гребней и впадин. В этом случае, если представить каждую из пуль как единицу энергии, интенсивность распределения будет задаваться формулой:


I =

I1 + I2,


где I1 соответствует H2, а I

2 соответствует J2 из волнового примера. И никакого интерференционного слагаемого.

Вы уже знаете, что будет дальше. Теперь вообразите эти же эксперименты, проводимые со светом и электронами. Конечно, эксперимент с двумя прорезями на самом деле множество раз проводился со светом, показывая туже дифракционную картину, как и в волновом случае. Эксперимент с электронами тоже был проведен почти таким же образом, и были также проведены эквивалентные эксперименты с рассеянными от атомов в кристалле пучками электронов. Впрочем, чтобы не усложнять рассказ, я ограничусь воображаемым экспериментом с двумя прорезями, который переведет на этот язык недвусмысленные результаты, полученные в реальных экспериментах с электронами. Как и свет, электроны демонстрируют дифракционную картину.


Рис. 8.4. «Волны вероятности», кажется, определяют, куда идет каждая из «частиц» пучка, и интерферируют так же, как и волны воды (см. рис 1.3).


Перейти на страницу:

Похожие книги

Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература