В простейшем эксперименте с двумя прорезями интерференцию вероятностей можно толковать так, как будто бы электрон, вылетая из пушки, исчезает, становясь невидимым, и заменяется массивом электронов-призраков, каждый из которых своим путем идет к экрану детектора. Призраки интерферируют друг с другом, и, взглянув на то, как электроны регистрируются экраном, мы можем заметить следы этой интерференции, даже если мы имеем дело только с одним «настоящим» электроном зараз. Однако этот массив электронов-призраков описывает только то, что происходит, когда мы не наблюдаем за процессом; когда же мы наблюдаем за ним, все призраки, за исключением одного, исчезают, а один из них превращается в настоящий электрон. С позиции волнового уравнения Шрёдингера каждый из «призраков» соответствует волне, а точнее группе волн, которые Борн посчитал мерой вероятности. Наблюдение, которое выхватывает один электрон из массива потенциальных призраков, с позиции волновой механики приравнивается к исчезновению всего массива вероятностных волн, за исключением одной группы волн, описывающих единственный реальный электрон. Это называется «редукцией волновой функции», и, какой бы странной она ни была, она лежит в основе Копенгагенской интерпретации, на которой, в свою очередь, покоится вся квантовая кулинария. Сомнительно, однако, что многие физики, инженеры-электроники и другие ученые, прекрасно применяющие рецепты из квантовой кулинарной книги, понимают, что законы, оказавшиеся столь надежными при разработке лазеров и компьютеров или изучении генетического материала, покоятся исключительно на допущении, что мириады частиц-призраков постоянно взаимодействуют друг с другом и совмещаются в единственную реальную частицу только тогда, когда при наблюдении редуцируется волновая функция. Хуже того, как только мы
Возможно, люди, так радостно использующие квантовые рецепты, чувствуют себя комфортно из-за хорошего знакомства с математическими уравнениями. Фейнман просто объясняет основной рецепт. В квантовой механике «событие» – это набор изначальных и финальных условий, ни больше ни меньше. Электрон вылетает из пушки с одной стороны аппарата и достигает конкретного детектора по другую сторону прорезей. Это событие. Вероятность события задается квадратом числа, которым по сути является волновая функция Шрёдингера ψ. Если существует более одного способа, в соответствии с которым может произойти событие (обе прорези открыты в процессе эксперимента), вероятность каждого из возможных событий (вероятность того, что электрон попадет на конкретный детектор) задается квадратом суммы всех ψ, при этом существует интерференция. Но когда мы устанавливаем наблюдение, чтобы выяснить, по какому из альтернативных путей на самом деле пошло развитие событий (проверить, через какую из прорезей прошел электрон), распределение вероятностей являет собой просто сумму квадратов всех ψ и условие интерференции пропадает – волновая функция редуцируется.
Физика невероятна, но математика проста и понятна, ее уравнения знакомы любому физику. Если не задаваться вопросом, что это означает, не возникает никаких проблем. Но стоит только спросить, почему мир устроен именно так, и даже Фейнману приходится ответить: «У нас нет ни малейшего понятия». Если настойчиво требовать физическую картину происходящего, окажется, что все физические картины обернутся миром призраков, в котором частицы только кажутся реальными, когда мы наблюдаем за ними и где даже свойства вроде импульса или положения обусловлены исключительно наблюдением. Едва ли можно удивляться тому, что многие уважаемые физики, включая Эйнштейна, десятилетиями пытались найти способ объяснить квантовую механику по-другому. Все их старания, которые будут кратко описаны в следующей главе, ни к чему не привели, причем каждый новый провал попытки развенчать Копенгагенскую интерпретацию только укреплял фундамент этой картины призрачного мира вероятностей, открывая дорогу от квантовой механики к новому представлению о холистической Вселенной. Основа этого нового представления лежит в полном математическом выражении комплементарности, но прежде чем мы сможем обратиться к следствиям, нужно разобраться еще кое с чем.
Законы дополнительности
Общая теория относительности и квантовая механика обычно считаются двумя триумфальными достижениями теоретической науки XX века, и сегодня Священным Граалем физиков стало истинное объединение этих концепций в одну великую теорию. Их усилия, как мы увидим, явно становятся прекрасными экскурсами в природу Вселенной. Но эти усилия, кажется, не обращают внимания на тот факт, что, строго говоря, две эти картины мира могут быть несовместимы.