Читаем Вечность. В поисках окончательной теории времени полностью

У пространства состояний может быть громадное количество измерений, даже если обычное пространство всего лишь трехмерное. В этом контексте под измерением понимается «число, необходимое для фиксации точки в пространстве». В пространстве состояний есть по одному измерению для каждой компоненты положения и по одному измерению для каждой компоненты импульса для каждой частицы в системе. Если мы говорим о бильярдном шаре, катающемся по плоскому двумерному столу, то нам требуется два числа для описания его положения (так как сам стол двумерный) и два числа для описания его импульса (величины и направления). Таким образом, пространство состояний одного бильярдного шара, привязанного к двумерному столу, четырехмерное: два числа для положения, два для импульса.




Рис. 7.7.

Два шара на бильярдном столе и соответствующее пространство состояний. Для обозначения положения каждого шара на столе требуется два числа, и еще два числа описывают его импульс. Полное состояние двух частиц представляет собой точку в восьмимерном пространстве (справа). Мы не можем нарисовать восемь измерений, так что постарайтесь вообразить, что они там действительно присутствуют. Каждый дополнительный шар добавляет к пространству состояний четыре измерения




Если бы на столе было девять шаров, то нам потребовалось бы по два числа на положение каждого шара и по два на их импульсы – итого тридцать шесть измерений фазового пространства. Число измерений, требующихся для описания импульса и положения, всегда совпадает, так как в реальном пространстве вдоль каждой из осей пространства направлено по одной компоненте импульса. Если рассмотреть случай бейсбольного мяча, летящего в воздухе, что эквивалентно задаче об одной частице, свободно движущейся в трехмерном пространстве, то пространство состояний для него будет шестимерным. Для 1000 частиц оно будет 6000-мерным.

В реалистичных задачах пространство состояний чрезвычайно велико. Настоящий бильярдный шар состоит примерно из 1025 атомов, а пространство состояний представляет собой список положений и импульсов каждого из них. Вместо того чтобы рассматривать эволюцию всех этих атомов, движущихся сквозь трехмерное пространство со своими импульсами, мы можем с равным успехом говорить о движении всей системы целиком как об одной точке (состоянии), движущейся сквозь пространство состояний с громадным количеством измерений. Это кардинальный способ перепаковки огромного объема информации в другую форму; нисколько не упрощая описание (мы всего лишь подменили огромное количество частиц огромным количеством измерений), он позволяет взглянуть на вещи с новой точки зрения.

Ньютоновская механика инвариантна относительно выбора направления времени. Если вы снимете фильм о том, как наш одинокий бильярдный шар катается по зеленому фетру и отскакивает от бортиков стола, то ни один зритель не сможет сказать, смотрит он эту пленку в прямом или в обратном воспроизведении. В обоих случаях на экране происходит одно и то же: шар катится по прямой линии с постоянной скоростью до тех пор, пока не врежется в бортик и не отскочит от него.

Однако это далеко не конец истории. В нашем шахматном мире мы определили инвариантность относительно обращения времени как идею о том, что последовательность состояний системы можно отразить во времени, и результат все так же будет подчиняться сформулированным для этого мира законам физики. На шахматной доске состоянием является строка белых и серых квадратиков; для бильярдного шара это точка в пространстве состояний, задающая положение и импульс шара.

Взгляните на первую часть траектории шара на рис. 7.6. Шар равномерно и прямолинейно катится вверх и вправо, величина его импульса остается постоянной, и направлен импульс также вверх и вправо. Если зеркально отразить происходящее во времени, то мы получим последовательность положений шара, движущегося из верхней правой области стола в нижнюю левую, а также набор одинаковых импульсов, указывающих вверх и вправо. Но это какое-то безумие. Если шар катится вдоль траектории с обратным направлением времени – сверху и справа вниз и влево, то и направление его импульса должно совпадать с направлением скорости. Очевидно, что самый простой рецепт – взять исходный набор состояний, упорядоченный во времени, и воспроизвести его в неизменном виде в обратную сторону – не работает. Получившаяся траектория не отвечает законам физики. (Совершенно очевидно, что импульс никак не может быть направлен в сторону, противоположную направлению скорости, ведь он равен произведению скорости и массы![119])

Перейти на страницу:

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг