Читаем Вечность. В поисках окончательной теории времени полностью

С больцмановским подходом ко второму началу термодинамики связаны еще два надоедливых вопроса, которые не мешало бы прояснить или, по крайней мере, о которых стоит упомянуть. Итак, у нас есть огромный набор микросостояний, который мы подразделяем на макросостояния, и мы объявляем, что энтропия равна логарифму числа микросостояний в данном макросостоянии. Теперь нам предлагают добавить еще один существенный факт — предположение о том, что все микросостояния, отвечающие одному и тому же макросостоянию, «равновероятны».

Следуя по цепочке рассуждений Больцмана, логично было бы утверждать, что причина возрастания энтропии со временем кроется всего-навсего в количестве микросостояний: куда больше микросостояний образуют макросостояния с высокой энтропией, чем с низкой. Однако это утверждение не имело бы никакого смысла, если бы типичная система проводила намного больше времени в низкоэнтропийных микросостояниях (а их относительно немного), чем в высокоэнтропийных (которых гораздо больше). Представьте себе, будто у микроскопических законов физики появилось новое свойство: почти все высокоэнтропийные состояния естественным образом переходят в одно из немногих низкоэнтропийных состояний. В таком случае тот факт, что состояний с высокой энтропией больше, не играл бы совершенно никакой роли; мы все равно знали бы, что если подождать достаточно долго, то энтропия в системе понизится.

Несложно вообразить мир с подобными безумными законами физики. Давайте еще раз вернемся к бильярдному столу с катающимися по нему шарами. Шары перемещаются по столу совершенно обычным образом, за одним важным исключением: каждый раз, когда шар врезается в какой-то один бортик стола, он мгновенно к нему прилипает. (Мы предполагаем, что в нашем мысленном эксперименте нет злоумышленника, намазавшего бортик клеем, или еще чего-то подобного, демонстрирующего, тем не менее, обратимое поведение на микроскопическом уровне, — в данном случае мы вводим совершенно новый фундаментальный закон физики.) Обратите внимание на то, что пространство состояний этих бильярдных шаров абсолютно такое же, каким оно было бы в традиционном мире: зная положение и импульс каждого шара, мы можем с идеальной точностью предсказать их будущее. Тонкость лишь в том, что с громадной вероятностью в конце эволюции этой системы все шары будут находиться возле одного из бортиков. Энтропия такой конфигурации чрезвычайно низка; подобных микросостояний совсем немного. В таком мире энтропия могла бы спонтанно уменьшиться даже в замкнутой системе, такой как бильярдный стол.

Совершенно очевидно, что в этом примере, хоть и притянутом за уши, фигурирует новшество: необратимый закон физики. А сама система очень напоминает шахматную доску D

из предыдущей главы: там диагональные линии серых квадратиков обрывались после соприкосновения с одним из вертикальных столбцов. Информации о положениях и импульсах всех шаров на этом забавном столе достаточно для того, чтобы предсказывать будущее, но восстановить прошлое она не позволит. Увидев шар, лежащий рядом с бортиком, мы уже не сможем узнать, как долго он там находится.

Реальные же законы физики на фундаментальном уровне обратимы. И если вдуматься, это их свойство гарантирует, что высокоэнтропийные состояния не будут стремиться переходить в состояния с низкой энтропией. Как вы помните, основа обратимости — сохранение информации. Информация, необходимая для описания конкретного состояния, сохраняется, несмотря на то что система движется, меняясь с течением времени. Это означает, что два разных состояния с течением времени всегда переходят в два разных состояния; если бы в будущем они приходили в какое-то одно состояние, то мы не могли бы восстановить прошлое этого состояния. Поэтому совершенно невозможно, чтобы все высокоэнтропийные состояния стремились в низкоэнтропийные: состояний с низкой энтропией просто-напросто слишком мало, для того чтобы это было реально. Данный результат называется теоремой Лиувилля в честь французского математика Жозефа Лиувилля.

Это почти то, что нам нужно, но не совсем. И, как это часто случается, мы хотим того, что вряд ли сможем в действительности получить. Предположим, что у нас есть какая-то система, мы знаем, в каком макросостоянии она находится, и хотели бы сделать какие-то предсказания относительно ее будущего. Пусть это будет, например, стакан воды с плавающим в ней кубиком льда. Согласно теореме Лиувилля, большинство микросостояний этого макросостояния будут стремиться к увеличению (либо сохранению) энтропии. То же самое говорит нам второе начало термодинамики: кубик льда, скорее всего, растает. Однако система находится ровно в одном конкретном микросостоянии, даже если мы не знаем точно, в каком. Можем ли мы быть уверены, что это не одно из того крошечного набора микросостояний, в которых энтропия способна в любое мгновение внезапно уменьшиться? Как гарантировать, что кубик льда не увеличится, одновременно нагрев окружающую его воду?

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

В поисках кота Шредингера. Квантовая физика и реальность
В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной. Книга ставит вопрос: «Что есть реальность?» – и приходит к самым неожиданным выводам. Показывается вся удивительность, странность и парадоксальность следствий, которые вытекают из применения квантовой теории.Предназначено для широкого круга читателей, интересующихся современной наукой.

Джон Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература