Энергетический баланс Земли, если рассматривать ее как единую систему, очень прост. Мы получаем энергию излучения Солнца, а затем теряем тот же самый объем энергии. Точно так же, посредством излучения, он уходит в открытый космос. (В действительности эти две величины не совсем равны; такие процессы, как ядерные распады, тоже нагревают Землю и приводят к утечке энергии в космос, а скорость излучения, строго говоря, не постоянна. И все же это весьма точное приближение.) Однако, несмотря на то что энергия остается постоянной, получаемый и отдаваемый потоки энергии кардинальным образом различаются по своим
От Солнца мы получаем энергию в низкоэнтропийной, полезной форме, а энтропия энергии, которую мы излучаем обратно в космическое пространство, намного больше. Температура Солнца примерно в 20 раз выше средней температуры Земли. Что касается излучения, то температура — это всего лишь средняя энергия фотонов, из которых оно состоит, поэтому Земле приходится излучать 20 низкоэнергетичных фотонов (с большой длиной волны — инфракрасных) на каждый полученный высокоэнергетичный фотон (с малой длиной волны — в видимом диапазоне). Простые математические расчеты демонстрируют, что «в 20 раз больше фотонов» — это то же самое, что «энтропия в 20 раз больше». Земля излучает тот же объем энергии, что приходит к ней от Солнца, но энтропия этой энергии в 20 раз больше.
Самое сложное здесь — разобраться, что в действительности имеется в виду под «низкоэнтропийностью» жизненных форм здесь, на Земле. Как провести границу? Ответ на этот вопрос существует, и даже не один, но добраться до него совсем непросто. К счастью, можно срезать путь. Рассмотрим всю биомассу Земли — все молекулы, составляющие все существующие живые организмы, к какому бы типу они ни принадлежали. Несложно вычислить максимальную энтропию, которой мог бы обладать этот набор молекул при условии термического равновесия. Подставив реальные значения (биомасса 1015
килограммов; температура Земли 255 кельвинов), получаем ответ: максимальная энтропия равна 1044. Сравним это значение с нулем — минимальной энтропией, которой могла бы обладать биомасса (если бы она находилась в каком-то одном исключительном состоянии).Таким образом, самое большое потенциальное изменение энтропии, которое может потребоваться для приведения абсолютно беспорядочного набора молекул размером с нашу биомассу к любой другой конфигурации, включая нашу текущую экосистему, равно 1044
. Если эволюция жизни происходит в соответствии со вторым началом термодинамики, то за этот период Земля выработала больше энтропии (путем преобразования высокоэнергетичных фотонов в низкоэнергетичные), чем уменьшила в ходе создания жизни. Значение 1044, несомненно, представляет собой более чем щедрую оценку — нам совершенно не нужно производить такой объем энтропии. Однако если мы можем создать столько энтропии, значит, со вторым началом термодинамики все в порядке.Как много времени потребуется на создание такого объема энтропии путем преобразования полезной солнечной энергии в бесполезную излученную теплоту? Расчеты, принимающие во внимание температуру Солнца и т. п., позволяют дать следующий ответ: около одного года. Если ударно поработать, то за год мы могли бы из неопределенной массы размером со всю биосферу сформировать систему с такой низкой энтропией, какую только можно вообразить. В действительности же эволюция жизни продолжалась миллиарды лет, и общая энтропия системы «Солнце + Земля (включая жизнь) + ушедшее излучение» весьма заметно увеличилась. Таким образом, второе начало термодинамики идеально согласуется с жизнью как мы ее знаем, — хотя, уверен, вы в этом нисколько не сомневались.
Жизнь в движении
Приятно осознавать, что жизнь не нарушает второе начало термодинамики. Но также неплохо было бы окончательно разобраться в вопросе, что же такое «жизнь». Ученые пока не пришли к единственно верному определению, тем не менее существует ряд свойств, которые традиционно связывают с живыми организмами: сложность, организация, метаболизм, обработка информации, репродукция, реакция на стимулы, старение. Сложно сформулировать набор критериев, с помощью которого можно было бы безошибочно отделять живых существ — водоросли, земляных червей, домашних кошек — от сложных неживых объектов, таких как лесные пожары, галактики, персональные компьютеры. И все же мы можем проанализировать некоторые характерные признаки того, что принято считать жизнью, рассматривая их в контексте живого и неживого.