В ходе пересмотра своего доказательства Пуанкаре пришел к обманчиво простому и мощному результату, который сегодня известен под названием теоремы Пуанкаре о возвращении. Представьте себе, что у вас есть система, все составляющие которой движутся в какой-то ограниченной области пространства, как планеты, вращающиеся вокруг Солнца. Теорема о возвращении гласит, что если начиная с некоторой конфигурации эволюционировать систему в соответствии с законами Ньютона, то она гарантированно вернется к своей первоначальной конфигурации и будет делать это снова и снова, бесконечное число раз в будущем.
Кажется, что это довольно очевидно, и, возможно, никто даже не удивляется этому. Если мы с самого начала предполагаем, что все части нашей системы (планеты, вращающиеся вокруг Солнца, или молекулы, летающие туда и сюда внутри контейнера) связаны в ограниченном объеме, а промежуток времени мы рассматриваем бесконечный, то системе ничего не остается, кроме как возвращаться к одному и тому же состоянию бесчисленное количество раз. А куда ей деваться?
Однако в действительности все немного сложнее. Главная тонкость заключается в том, что число возможных состояний бесконечно, даже если сами объекты не убегают на бесконечность.[175]
Круговая орбита заключена в конечном объеме, но сама она содержит бесконечное число точек; точно так же внутри контейнера с газом конечного объема существует бесконечно много точек пространства. В подобных случаях системы обычно не возвращаются в состояние,Рассмотрим три планеты внутренней части Солнечной системы: Меркурий, Венеру и Землю. Венера совершает один оборот вокруг Солнца за 0,61520 года (примерно 225 дней), тогда как Меркурию для этого требуется 0,24085 года (около 88 дней). Взгляните на схему, изображенную на рис. 10.2. Мы начинаем наблюдение с конфигурации, когда все три планеты выстроились в прямую линию. Пройдет 88 дней, и Меркурий вернется к точке старта, однако Венера и Земля в это время будут находиться в каких-то других точках своих орбит. Однако если потратить на ожидание достаточно много времени, то они снова выстроятся в прямую линию — или линию, очень близкую к прямой. Скажем, через 40 лет эти три планеты образуют конфигурацию, почти идентичную той, которую мы наблюдали вначале.
Рис. 10.2.
Внутренняя часть Солнечной системы, в которой Меркурий, Венера и Земля находятся на одной линии (внизу), и конфигурация 88 дней спустя (вверху). Меркурий вернулся в исходное положение, а Венера и Земля находятся в других точках своих орбитПуанкаре показал, что так себя ведут все связанные механические системы, даже те, в которых количество движущихся частей очень велико. Но необходимо помнить о том, что время ожидания, пока система вернется в состояние, близкое к начальному, по мере увеличения числа частей также увеличивается. Если бы мы захотели увидеть, как в линию выстроятся все девять планет Солнечной системы,[176]
нам пришлось бы потратить на ожидание куда больше 40 лет. В какой-то степени это можно оправдать тем, что внешние планеты медленнее вращаются вокруг Солнца, но главная причина в том, что большему количеству объектов требуется больше времени, чтобы общими усилиями воссоздать данную начальную конфигурацию.Это стоит подчеркнуть: по мере того как число частиц в рассматриваемой системе увеличивается, время, необходимое для возвращения системы в исходное положение или близкое к нему, известное под вполне логичным названием времени
В большинстве реальных объектов содержится куда больше частиц. Время возврата типичного макроскопического объекта будет составлять по меньшей мере
101 000 000 000 000 000 000 000 000
секунд.