Это чудесное свойство делает логарифмы невероятно полезными для изучения энтропии. Как мы обсуждали в главе 8, физическое свойство энтропии заключается в том, что энтропия двух систем после объединения равна сумме энтропий этих систем по отдельности. Но число возможных состояний объединенной системы равно произведению количеств возможных состояний двух систем. Поэтому Больцман сделал вывод о том, что энтропия должна быть равна логарифму числа состояний, а не самому числу состояний. В главе 9 мы рассказали схожую историю, но уже для информации: Шэннон хотел найти меру информации, для которой общая информация, переданная в двух независимых сообщениях, была бы равна сумме количеств информации в каждом из сообщений, и он также прибегнул к помощи логарифма.
Проще говоря, логарифмы обладают таким милым свойством, что они берут огромные числа и стачивают их до управляемых размеров. Беря логарифм от такого тяжеловесного числа, как миллиард, мы получаем симпатичную девятку. Логарифм — функция монотонная, то есть его значение всегда увеличивается по мере увеличения значения, от которого берется логарифм. Таким образом, логарифм предоставляет специфическую меру того, насколько число велико, но при этом сжимает громадные числа до разумных размеров, что чрезвычайно полезно в таких областях, как космология, статистическая механика и даже экономика.
В заключение необходимо отметить, что, так же как и степенная функция, логарифмы могут браться по разным основаниям. «Логарифм по основанию
log2
(2x) = x,log12
(12x) = xи т. д. Если мы не записываем основание явно, то подразумевается, что оно равно 10, потому что именно таким количеством пальцев обладает большинство людей. Однако ученые и математики частенько используют нечто странное, а именно натуральный логарифм, который часто записывается как ln(
ln(x) = loge
(x),e = 2,7182818284…
Число Эйлера — это иррациональное число, как π или квадратный корень из двух, так что в десятичной записи, которая частично показана выше, оно продолжается бесконечно. На первый взгляд кажется, что использовать нечто подобное в качестве основания логарифма невероятно странно. Но в действительности если углубиться в математику, то выяснится, что число
Благодарности
Для того чтобы выпестовать книгу — от концепции до публикации, необходимо приложить большие коллективные усилия, и я должен поблагодарить множество людей, которые помогали мне на этом пути. В период, когда существовали еще только лишь неясные очертания будущей книги, мне посчастливилось повстречать, полюбить и создать семью с женщиной, которая оказалась невероятно талантливым писателем и популяризатором науки. Я бесконечно благодарен Дженнифер Оллетт (Jennifer Ouellette), благодаря которой эта книга стала несравнимо лучше, а весь процесс обрел смысл.
Я разослал черновики рукописи многим своим друзьям, и в ответ они прислали мне массу шутливых комментариев и кучу до невозможности разумных предложений по улучшению. Огромное спасибо Скотту Ааронсону (Scott Aaronson), Эллисон Беатрис (Allyson Beatrice), Дженни Чен (Jennie Chen), Стивену Фладу (Stephen Flood), Дэвиду Гре (David Grae), Лорен Гандерсон (Lauren Gunderson), Робину Хэнсону (Robin Hanson), Мэтту Джонсону (Matt Johnson), Крису Лакнеру (Chris Lackner), Тому Левенсону (Tom Levenson), Карен Лорре (Karen Lorre), Джорджу Массеру (George Musser), Хью Прайсу (Huw Price), Тэду Пайну (Ted Pyne), Мари Рути (Mari Ruti), Алексу Сингеру (Alex Singer) и Марку Троддену (Mark Trodden) за то, что не давали сбиться с пути истинного. Подозреваю, что многие из них в скором будущем примутся за написание собственных книг, и я буду счастлив прочитать каждую.