Читаем Великий треугольник, или Странствия, приключения и беседы двух филоматиков полностью

— Да потому, что каждая из шести граней первой кости варьируется с шестью гранями второй. Следовательно, число возможных вариантов есть 6×6, что всегда равно 36. И только один из этих 36 вариантов дает выигрыш первому игроку. Стало быть, вероятность выпадения двух шестерок очень мала: 1/36 ≈ 0,028. А вероятность невыпадения, наоборот, очень велика: 1 — 1/36 = 35/36 ≈ 0,972. При вторичном броске вероятность невыпадения сохраняется (35/36), так как она не зависит от результата первого броска. Значит, согласно теореме умножения, вероятность невыпадения с учетом обоих бросков будет уже равна произведению вероятностей каждого броска в отдельности, то есть (35/36)2. Тогда вероятность выпадения при двух бросках равна: 1 — (35/36)2, что больше вероятности выпадения при одном броске почти вдвое: 1 — (35/36)2 ≈ 1 — 0,95 = 0,05. Остается выяснить, каково должно быть минимальное число бросков, чтобы вероятность выпадения превысила вероятность невыпадения, то есть стала бы больше половины. Обозначим неизвестное нам число бросков через х. Тогда вероятность невыпадения (35/36)x,вероятность выпадения р = 1 — (35/36)x. Вот и всё!

— Позвольте! — шебаршится Фило. — Как же всё, если икс так и остался ненайденным? И каким способом вы думаете его найти?

— Очевидно, либо с помощью логарифмов, либо подбирая вместо икса числа, при которых вероятность выигрыша станет больше 0,5.

— Значит, именно так решали эту задачу в семнадцатом веке?

— Вот этого не скажу. К сожалению, лично мне способы Паскаля, Ферма и де Мере не известны.

— Зато известны результаты их решений, мсье, — напоминает бес. — У Паскаля и Ферма х = 25. А шевалье де Мере, как вы помните, получил два ответа: 24 и 25. И теперь у нас есть полная возможность выяснить, какой же из них верен.

— Вот именно, — кивает Мате. — При х = 24:


р

= 1 — (35/36)24 ≈ 1 — 0,5094 = 0,4906.


При х = 25:


р = 1 — (35/36)25 ≈ 1 — 0,4955 = 0,5045. 


Так что правы-то все-таки Паскаль и Ферма: вероятность, превышающая половину — 0,5045, — получается именно при х = 25.

— Слава тебе господи! — ублаготворенно вздыхает Фило. — Одна задача с плеч долой. Можно переходить ко второй…

Но в это самое время из знакомой уже нам книги Лесажа, на обложке которой Хромой бес возносит в ночное небо сеньора в испанскрм плаще и широкополой шляпе с перьями, вырывается чей-то отчаянный баритон в сопровождении дикого хора кошачьих воплей.

— Асмодей, Асмодей! Куда вы запропастились? Я жду вас целую вечность!

— Дон Клеофас Леандро-Перес Самбульо, — смешливым шепотом поясняет черт. — Постоянно этот студент влипает в какие-то истории!

Услыхав голоса своих сородичей, Пенелопа и Клеопатра приходят в страшное волнение и начинают носиться по квартире как угорелые. Буль, которому передается их беспокойство, рычит, задрав голову к потолку. Но виновник переполоха и ухом не ведет!

— Асмодей! — взывает Самбульо. — Есть у вас совесть? Бросили меня на крыше, а тут какой-то кошачий симпозиум. Вы что, хотите, чтобы я оглох от этой кошкофонии?

«Мя-а-а-у! Мя-а-а-у!» — завывают коты на крыше.

«Мяу! Мяу!» — вторят кошки в комнате.

И тут Асмодей не выдерживает (он бес не БЕСсердечный).

— Лечу, дорогой дон Леандро-Перес! — восклицает он, торопливо дожевывая кусок пирога. — Продержитесь еще немного! Сейчас все будет улажено.

Он вихрем взвивается к потолку и снова исчезает за картонной обложкой, откуда сразу же доносится жалобный визг разгоняемых симпозиатов вперемешку с чертыханием Самбульо. Потом все стихает, и Асмодей с расцарапанным носом, но зато в прекрасном настроении вновь занимает место у стола.

— Ну и переделка, мсье! По-моему, там собрались коты со всего Мадрида. Только на сей раз не пришлось им закончить своей КОТОвасии. Ко-ко-ко…

— Сходное положение. Совсем как во второй задаче де Мере, — острит Мате. — Игроки вносят деньги, но не успевают закончить игру. После чего им приходится выяснять, какая часть ставки причитается каждому.

— Добавьте, мсье, что в игре участвуют трое, бросающие трехгранные кости, и что каждый ставит на одну из граней.

— Разберемся по порядку, — начинает Мате. — Допустим, игроки условились бросать кости по очереди до тех пор, пока у одного из них задуманное число очков не выпадет, скажем, шесть раз. При этом первый, кому повезет, забирает все три ставки себе. Теперь рассмотрим такую картину. У одного игрока уже было пять удач. Значит, до выигрыша ему остается всего один счастливый бросок. У второго и третьего до выигрыша не хватает двух удачных выпадений, то есть у каждого из них задуманное число очков выпало по четыре раза. Но в это время игра прекращается, так как происходит что-то из ряда вон выходящее—пожар, землетрясение, всемирный потоп (ибо что же еще может заставить заядлых игроков бросить игру?). И тут возникает вопрос: как разделить поставленные деньги между партнерами?

— Вот так задачка! — Фило озабоченно почесывает затылок. — На месте де Мере я бы тоже ее не решил.

Перейти на страницу:

Все книги серии Искатели необычайных автографов

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука