Несмотря на такие огромные достижения, как GPT-3 и рекомендательные системы, нынешний подход к ИИ вряд ли скоро превзойдет человеческий интеллект или даже достигнет очень высокого уровня производительности во многих задачах, связанных с принятием решений. Задачи, в которых задействованы социальные и ситуационные аспекты человеческого познания, по-прежнему будут представлять огромные трудности для машинного интеллекта. Как только мы рассмотрим детали достигнутых результатов, станет ясно, насколько сложно перенести существующие успехи на большинство человеческих задач.
Возьмем самые громкие успехи ИИ, такие как шахматная программа AlphaZero. AlphaZero даже считается "творческой", потому что она придумала ходы, которые человеческие шахматные мастера не рассматривали или не видели. Тем не менее, это не настоящий интеллект. Начнем с того, что AlphaZero является чрезвычайно специализированной программой и может играть только в шахматы и другие подобные игры. Даже самые простые задачи за пределами шахмат, такие как простая арифметика или игры с более социальным взаимодействием, находятся за пределами возможностей AlphaZero. Хуже того, не существует очевидного способа адаптировать архитектуру AlphaZero для выполнения многих простых вещей, которые делают люди, таких как проведение аналогий, игры с менее строгими правилами или изучение языка, что мастерски делают сотни миллионов годовалых детей каждый год.
Интеллект AlphaZero в шахматах также очень специфичен. Хотя шахматные ходы AlphaZero в рамках правил игры впечатляют, они не включают в себя тот тип творчества, которым регулярно занимаются люди, например проведение аналогий между неструктурированными, разрозненными средами и поиск решений новых и разнообразных проблем.
Даже GPT-3, хотя и более универсальный, и впечатляющий, чем AlphaZero, демонстрирует те же ограничения. Он не может выполнять задачи, выходящие за рамки тех, для которых он был предварительно обучен, и не проявляет способности к суждению, поэтому противоречивые или необычные инструкции могут поставить его в тупик. Хуже того, в этой технологии нет ни элемента социального или ситуационного интеллекта человека. GPT-3 не может рассуждать о контексте, в котором находятся выполняемые им задачи, и использовать причинно-следственные связи, существующие между действиями и последствиями. В результате он иногда неправильно понимает даже простые инструкции и не надеется адекватно реагировать на изменяющуюся или совершенно новую обстановку.
На самом деле, эта дискуссия иллюстрирует более широкую проблему. Статистические подходы, используемые для распознавания образов и прогнозирования, плохо подходят для отражения сути многих человеческих навыков. Начнем с того, что эти подходы испытывают трудности с ситуационной природой интеллекта, поскольку точную ситуацию трудно определить и закодировать.
Другой извечной проблемой статистических подходов является "чрезмерная подгонка", которая обычно определяется как использование большего количества параметров, чем оправдано для подгонки некоторой эмпирической зависимости. Опасение заключается в том, что чрезмерная подгонка заставляет статистическую модель учитывать нерелевантные аспекты данных, что приводит к неточным прогнозам и выводам. Статистики разработали множество методов предотвращения чрезмерной подгонки - например, разработка алгоритмов на выборке, отличной от той, на которой они применяются. Тем не менее, чрезмерная подгонка остается бельмом на глазу статистических подходов, поскольку она фундаментально связана с недостатками современного подхода к ИИ: отсутствием теории моделируемых явлений.
Чтобы объяснить эту проблему, полезно иметь более широкое представление о проблеме избыточной подгонки, основанной на использовании нерелевантных или непостоянных характеристик приложения. Рассмотрим задачу отличия волков от хаски. Хотя люди прекрасно справляются с этой задачей, она оказывается сложной для ИИ. Когда некоторым алгоритмам удалось добиться хороших результатов, позже стало ясно, что это произошло благодаря чрезмерной подгонке: хаски распознавались на фоне городской среды, например, красивых газонов и пожарных гидрантов, а волки - на фоне природы, например, снежных гор. Это нерелевантные характеристики в двух фундаментальных смыслах. Во-первых, люди не полагаются на этот фон для определения или различения животных. Во-вторых, что еще более тревожно, по мере потепления климата среда обитания волков может измениться, или волков придется идентифицировать в других условиях. Другими словами, поскольку фон не является определяющей характеристикой волков, любой подход, опирающийся на него, приведет к ошибочным прогнозам по мере развития мира или изменения контекста.