Читаем Вначале была аксиома. Гильберт. Основания математики полностью

3. Равенство объема двух тетраэдров одинакового основания и высоты. В своей книге Гильберт озаботился определением понятия площади в плоскостной геометрии без использования анализа бесконечно малых (интегралов) и достиг успеха, охарактеризовав многоугольники одинаковой площади как равносоставленные (то есть состоящие из одного и того же числа одинаковых треугольников). Удастся ли сделать то же самое с понятием объема в пространственной геометрии? Удастся ли охарактеризовать многогранники одинакового объема как многогранники, которые могут быть разложены на одно и то же число равных тетраэдров? В 1902 году Макс Ден (1878-1952) ответил на эти вопросы отрицательно: существует два тетраэдра с одинаковым основанием и высотой (а значит, с одинаковым объемом), которые, однако, не являются равносоставленными. Невозможно разделить первый на конечное количество многогранных частей так, чтобы они могли быть собраны для получения второго. В то время как в двух измерениях было возможно определить площадь, не применяя анализ, в трех измерениях сложный процесс перехода к пределу, известный как чертова лестница, оказывался неизбежным и мешал определить понятие объема, не прибегая к анализу.

4. Проблема отрезка прямой как кратчайшего расстояния между двумя точками. Гильберт предлагает продолжить исследование различных возможных аксиоматических геометрий с учетом того, к какой группе аксиом может привести результат, позволяющий сделать вывод, что в любом треугольнике сумма двух его сторон всегда больше третьей, а следовательно, отрезок прямой — это кратчайший путь между двумя точками. Хотя эта проблема сформулирована слишком расплывчато, она стала более точной в области геометрии Римана, когда требуется построить все возможные расстояния так, чтобы обычные прямые линии оказались геодезическими (кратчайшими путями).

Математический клуб Гёттингена, 1902 год. В центре Клейн, основатель клуба, справа от него Г ильберт.

Математик Герман Минковский в молодости. С Гильбертом их связывала крепкая дружба до самой смерти Минковского в 1909 году.

Гильберт и Кёте Ерош, на которой он женился в 1892 году.



5. Анализ понятия, введенного Софусом Ли (1842-1899) в отношении группы трансформаций, за исключением гипотезы о дифференцируемости функций, входящих в состав группы.

6. Математический подход к аксиомам физики. Гильберт был заинтересован в аксиоматизации различных областей физики (в особенности механики и вычисления вероятностей, которое в то время набирало силу как инструмент термодинамики), чтобы определить им формат, наподобие геометрии, ведь ее он считал практически эмпирической наукой. В решении этой проблемы уже наметился сдвиг благодаря физикам Эрнсту Маху (1838-1916) и Генриху Герцу, но математики ею еще не занимались. Программа аксиоматизации физики добилась (как станет ясно в следующей главе) определенных побед в первые десятилетия XX века.

В рамках блока теории чисел Гильберт выделил пять проблем.

7. Иррациональность и трансцендентность некоторых чисел. Трансцендентное число — это тип иррационального числа, которое не является корнем из какого-либо многочлена с целыми коэффициентами. В противоположность ему алгебраическое число — это любое число, являющееся решением полиномиального уравнения с целыми коэффициентами. Поскольку было известно не так уж много трансцендентных чисел (кроме и e), Гильберт сформулировал конкретный вопрос: если a — это алгебраическое число (отличное от 0 и 1), а b — иррациональное алгебраическое число, является ли аь

трансцендентным? Для Гильберта это было одной из самых сложных проблем в списке. Однако в 1934 году Александр Гельфонд (1906-1968) и Теодор Шнайдер (1911— 1988) доказали, что это так. В частности, 22 является трансцендентным.

8. Изучение простых чисел. Здесь Гильберт поставил ряд вопросов, связанных с распределением простых чисел. Главный вопрос — без сомнения, знаменитая гипотеза Римана, в которой предполагалось, что некоторая функция, связанная с этими числами и называемая дзета- функцией Римана (z), имеет все свои нули на прямой Re(z) = 1/2 комплексной плоскости, то есть все ее нули — комплексные числа с действительной частью, равной 1/2 . На сегодняшний день она все еще не доказана, хотя с помощью компьютера было проверено, что первые 1,5 триллиона нулей выполняют эту гипотезу. Гильберт также упомянул гипотезу Гольдбаха (согласно которой любое четное число может быть выражено в виде суммы двух простых чисел), существование бесконечного числа простых чисел-близнецов (то есть простых чисел, разность между которыми равна 2) и так далее.

9. Доказательство наиболее общего закона взаимности в любом числовом поле.

10. Определение разрешимости диофантовых уравнений.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука