Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Базовые понятия новой ветви анализа принадлежат Эйлеру и Лагранжу. Первый ввел название вариационное исчисление, а второй создал «метод вариации», который позволяет решить многие проблемы в рамках этой дисциплины. Основа вариационных проблем следующая: предполагается множество С любых элементов (чисел, геометрических точек, функций и так далее), которые обозначаются как м, и каждому элементу и назначается число F(u). Если С — это числовое множество, то F(u) — это функция от одной переменной; если С — это множество точек на плоскости, то F(u) — это функция от двух переменных, и так далее. Но если С — это множество функций, то F(u) — это то, что называется функционалоМу который в одной из различных функций, входящих в состав множества, может принимать значение экстремума (максимума или минимума).

Чтобы решить проблему вариационного исчисления, сравнивали пробную функцию и со всеми ближайшими функциями, то есть с теми, которые получаются при легком варьировании пробной функции и (отсюда название «вариационное исчисление»), и вычисляли функционал F для каждой функции. Для функции, являющейся решением, характерно, что функционал для всех ближайших функций всегда больше (если мы ищем минимум). В этом суть «метода вариации». Эйлер и Лагранж обнаружили: для того чтобы функция и множества С предоставляла экстремальное значение (максимум или минимум) функционалу, F("u) должно удовлетворять некоторому дифференциальному уравнению (уравнениям Эйлера — Лагранжа). Однако удовлетворение данному уравнению — необходимое, но недостаточное условие.

РИС. 3:

Дуга циклоиды между А и В.


РИС. 4:

Какую из трех возможных траекторий выберет частица, чтобы из А попасть в В? Принцип наименьшего действия устанавливает, что это траектория, минимизирующая величину под названием действие.


Мерой успеха этой плеяды идей является то, что многие математики XVIII и XIX веков стремились истолковать появлявшиеся в физике дифференциальные уравнения как экстремальные условия определенных функционалов. Законы физики можно было переписать в терминах принципов минимума, поскольку природа всегда стремится к оптимизации. Эту же цель преследовали Пьер Луи де Мопертюи (1698-1859) в механике по принципу наименьшего действия (см. рисунок 4), а также Пьер де Ферма (1601-1665) в оптике: траектория, которой следует луч света, проходя из точки А в другую точку В другой среды, — это траектория, требующая наименьшего времени. Физические трактаты конца XIX века были полны подобных принципов, утверждающих, что определенные физические процессы всегда протекают так, чтобы минимизировалось некое количество. Это были так называемые вариационные принципы.

Данная уважаемая область анализа была видом продолжения анализа бесконечно малых. Если традиционный анализ показывал, как найти максимумы или минимумы функции, вариационное исчисление демонстрировало, как определить функцию, максимизирующую или минимизирующую определенный функционал, который обычно выражен в виде интеграла. Однако эта проблема оказалась намного сложнее, и в конце XIX века еще нельзя было определить ряд критериев, гарантировавших существование экстремума (максимума или минимума). Таким образом, неудивительно, что вариационное исчисление касается 3 из 23 проблем Гильберта.

В то время как в проблеме 23 Гильберт задался вопросом о возможном обобщении вариационных методов, в проблемах 19 и 20 он озаботился свойствами и существованием решений проблем вариационного исчисления. Два вопроса оставались открытыми. Первый — существование или отсутствие решения (проблема 20), и второй — свойства, которым в случае своего существования это решение удовлетворяет. Если отбросить техническую оболочку, в проблеме 19 Гильберт спрашивал, должны ли физические проблемы, которые обычно позиционируются как проблемы вариационного исчисления (проблема Дирихле, например), всегда иметь решения с наилучшим поведением: всегда ли решения такие же плавные и регулярные, как аналитические функции (которые можно продифференцировать бесконечное число раз)? Эта проблема была решена в 1904 году российским математиком Сергеем Бернштейном (1880-1968) в его докторской диссертации (одним из руководителей которой был Гильберт). Бернштейн доказал, что решения уравнений в частных, интересовавших Гильберта производных (включая решения уравнения потенциала Лапласа), были, в случае их существования, регулярными, с идеальным поведением, если они удовлетворяли некоторым довольно простым условиям об их трех первых производных. Становилось очевидным, что, например, если интеграл Дирихле достигал своего минимума, то происходило это обязательно в допустимой функции.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука