Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Довольно долгое время уравнения (алгебраические) отвечали требованию вычислять неизвестные числа, например корни многочлена. Но в математике нередко возникают качественно другие проблемы: те, в которых неизвестное — это не число, а функция, выражающая отношение между различными переменными (как в случае с движением планет — зависимость пространственных координат от времени). Особый класс здесь — так называемые дифференциальные уравнения, определяющие неизвестную функцию на основе одного или нескольких уравнений, в которых участвуют производные функции.

Основав исчисление (дифференциальное и интегральное), Ньютон сформулировал законы физики в том виде, который связывал между собой физические величины и скорости изменения. То есть пространство, пройденное движущимся телом с его скоростью, и скорость движущегося тела с его ускорением. Итак, законы физики оказались выраженными через дифференциальные уравнения, при этом дифференциалы и производные были мерами скорости изменения. Производная функции показывает, как изменяется значение функции, если она возрастает, убывает или остается постоянной. Ускорение, например, измеряет изменения скорости движущегося тела, вариацию скорости во времени, поскольку частное дифференциалов скорости и времени есть производная скорости относительно времени:

а = dv/dt

Однако решение дифференциальных уравнений, как и алгебраических, не всегда оказывается простым, вернее никогда. Если неизвестная функция зависит от единственной переменной, они называются обыкновенными дифференциальными уравнениями. Например, производная от функции синуса у = sin х равна у’ = cos х, где у’ обозначает первую производную. Эта последняя функция может быть дифференцирована, в свою очередь, для получения у" = -sin х> из чего можно вывести дифференциальное уравнение у" = -у. Это — дифференциальное уравнение второго порядка, поскольку появляется вторая производная.

Другой пример дифференциального уравнения второго порядка — второй закон Ньютона: F = m x а («сила равна произведению массы на ускорение»),

а = dv/dt = d^2x /dt^2,

где ускорение — это первая производная от скорости, но также вторая производная от положения, если x(t) обозначает положение движущегося тела в зависимости от времени.

Обратная ситуация — если неизвестная функция зависит от более чем одной переменной и появляются производные относительно этих переменных: это называется уравнениями в частных производных. Предположим, объем газа V — это функция от его температуры Т и давления на него Р, то есть V(T,Р). Когда Тили Р изменяются, V тоже изменяется. Производная V(T, Р) относительно Т называется частной производной относительно Т и записывается как

V(T,Р)/T.

Точно так же

V(T,Р)/P

является частной производной относительно Р. Как и в случае с обыкновенными производными, существуют вторая, третья и так далее частные производные; так, в качестве примера

2V(T,Р)/P2

представляет собой вторую частную производную относительно Р. Но дифференциальные уравнения, в которых участвуют частные производные, имеют особенные черты, принципиально отличающие их от обыкновенных. В изучении естественных явлений уравнения в частных производных появляются так же часто, как и обыкновенные дифференциальные уравнения, но обычно их намного сложнее решать.

В XVIII веке изучение физического явления в сущности было примерно тем же самым, что и нахождение дифференциального уравнения, которое им управляет. Так, после открытия Ньютоном знаменитого дифференциального уравнения «сила равна произведению массы на ускорение», которое управляет движением систем точек и твердых упругих тел, швейцарский математик Леонард Эйлер (1707-1783) сформулировал систему уравнений в частных производных, описывающую движение сплошных сред (воды, воздуха и других флюидов), не обладающих вязкостью. Через некоторое время французский математик Жозеф-Луи Лагранж (1736-1813) сосредоточился на музыке, на уравнении в частных производных, которое показывает распространение звуковых волн. Позже Жан-Батист Фурье (1768-1830) обратился к потоку тепла, предложив другое уравнение в частных производных, описывающее его распространение. В разгаре XIX века уравнения Навье — Стокса описало движение вязких флюидов, а уравнения Максвелла — электромагнетизм. Вся природа — твердые тела, флюиды, звук, тепло, свет, электричество — оказалась смоделированной посредством уравнений в частных производных. Но одно дело — найти уравнения рассматриваемого явления, а другое — решить их.


Физика слишком сложна для физиков.

Давид Гильберт


Парадигматические уравнения в частных производных — это три уравнения, полученные в области математической физики: уравнение волн, уравнение тепла и уравнение Лапласа.

Прежде чем рассмотреть последнее, введем обозначение, которое чрезвычайно упрощает его запись: лапласианом функции u = u(х,y,z,t) от пространственных координат и времени называют сумму следующих производных относительно х,y,z:

u = ^2u/x^2 + ^2u/y^2 + ^2u/z^2

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука