Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Одно из них — это континуум. И если целые и рациональные числа счетные, то действительные числа такими не являются. Нельзя связать их попарно с натуральными числами, их нельзя пронумеровать, поставить в список одно за другим. Возьмем числовую прямую и рассмотрим отрезок от 0 до 1. Выразим все входящие в этот отрезок числа в двоичном коде, то есть с помощью последовательностей 0 и 1. Например: 101001000... (опустив 0 и запятую, отделяющую десятичную дробь, которые должны предшествовать выражению). Докажем, что предположение о том, что это счетное множество, приводит к противоречию. Действительно, если бы это было так, мы могли бы записать все его элементы в списке, подобном следующему:

1.° -> 0100...

2.° -> 0110...

3.° -> 1101...

...       ...

Теперь обратим внимание на элементы главной диагонали, они подчеркнуты. Построим элемент, который несмотря на то, что является последовательностью 0 и 1, не входит в список. Для этого образуем последовательность, состоящую из следующих чисел: так как первый выделенный член был 0, запишем 1; так как второй был 1, запишем 0; так как третий был 0, запишем 1; и так далее. Итоговый элемент начинается с 101... и не совпадает ни с одним из элементов в списке. Это не может быть первая последовательность, поскольку первый член отличается, не вторая, потому что мы изменили второй член, и не третья, и так далее. Это противоречит предположению, что речь идет о счетном множестве, которое, следовательно, может быть выражено в виде списка. Использованный метод доказательства получил название диагонализации и повлиял на последующие значимые доказательства в истории оснований математики.

Георг Кантор.




Между тем Дедекинд дал более удачное определение бесконечному множеству, чем Кантор. По прошествии времени оба определения, избавленные от ошибок, оказались равносильными (в соответствии с аксиомой выбора, о которой речь пойдет позже). Для Кантора множество бесконечно, если оно не конечно, то есть если нельзя провести биекцию с каким- нибудь натуральным числом. Для Дедекинда, наоборот, под влиянием предположений Галилея и Больцано, множество бесконечно только тогда, когда можно провести биекцию с его собственной частью. Например, натуральные числа бесконечны, потому что можно провести биекцию с четными числами, при этом 0 соответствует 0; 1 - 2; 2 - 4; и в целом каждому числу n — вдвое большее число 2n.


Его теория представляется мне наиболее заслуживающим удивления цветком математического духа и вообще одним из высших достижений чисто умственной деятельности человека. [...] Никто не изгонит нас из рая, который создал нам Кантор.

Давид Гильберт о Георге Канторе, «О бесконечном» (1925)


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука