Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Искусство математики заключается в том, чтобы найти этот особый случай, содержащий в себе все истоки обобщенности.

Давид Гильберт


Брауэр перенял эту живописную философию математики Пуанкаре, с которым лично встретился в 1909 году. В противоположность платонизму и логицизму, утверждающим, что математические истины открываются сами, интуиционизм утверждает, что на самом деле они изобретаются (этот тезис сближает его с формализмом). Однако на вопрос, где находится математическая точность, интуиционизм Брауэра отвечает: «разум», а формализм Гильберта: «бумага».

У Брауэра и Гильберта, которые познакомились во время отпуска в 1909 году, имелись две конфликтные темы: прежде всего это природа математики — как свободная конструкция человеческого понимания или как аксиоматическая теория — и роль принципа исключенного третьего в математике. Нерв интуиционизма именно в отрицании этого логического принципа, отсылающего к Аристотелю и утверждающего, что дизъюнкция пропозиции и ее отрицание — это логическая истина, то есть она всегда истинна, в любой модели или вселенной толкования (Av ¬A). Другими словами, либо А истинно, либо истинно отрицание А, потому что любой третий вариант систематически исключен (именно поэтому говорят об «исключенном третьем»). Наряду с принципом непротиворечия (¬(A^¬A)) и принципом идентичности ((перевернутое A)x(x = х)) этот принцип образовывал три классических закона рассуждения.

Однако для Брауэра это необязательно было так. Поскольку мы не знаем, содержит ли десятичное продолжение числа 20 нулей подряд, пропозиция «десятичное продолжение числа содержит 20 нулей подряд» не является (и в этом ключ к интуиционизму) ни истинной, ни ложной. Ее истинность на сегодняшний день не может быть определена. Один единомышленник Брауэра утверждал, что принцип исключенного третьего для такого типа пропозиций может быть справедливым для Бога (Он знает всю бесконечную последовательность знаков после запятой такой, как она есть), но такое невозможно для человеческой логики. Совершив разворот на 180° по отношению к логистической догме, интуиционисты считали такую логику ответвлением математики, а не наоборот.

Этот образ мысли положил начало тому, что с тех пор известно как «интуиционистская логика», формализованная прилежным учеником Брауэра Арендом Гейтингом (1898— 1980). В классической логике двойное отрицание пропозиции равносильно пропозиции, то есть ¬¬А->А. Но интуиционистская логика отрицает, что из двойного отрицания пропозиции можно вывести исходную пропозицию. Следовательно, ¬¬А->А не принимается. Этот интуиционистский пересмотр классической логики отвечает на вопрос: почему Брауэр отвергал рассуждения доведением до абсурда (к которым нередко прибегал Гильберт)? Доказательством ложности отрицания А не доказывалось, что А истинно, поскольку был оставлен принцип исключенного третьего.

Нидерландский математик считал справедливыми только конструктивные доказательства. Доказать, что отрицание теоремы противоречиво, — неравносильно доказательству, что теорема истинна, поскольку, прежде чем доказать последнее, нужно открыто сконструировать ее содержание. Для математиков-интуиционистов неконструктивные доказательства существования (доведением до абсурда) свидетельствуют о том, что в мире есть скрытое сокровище, но не указывают его местонахождение, поэтому такие доказательства имеют исключительно эвристическую ценность. Для существования математического объекта недостаточно, чтобы он не порождал никакого противоречия; нужно ввести эффективную процедуру его построения.

Парадоксы, открытые в рамках теории множеств, по мнению Брауэра, явно представляли собой опасность для чисто экзистенциальной математики. Не зря Кронекер всегда ожесточенно спорил с Кантором о том, что если не построить множества, о которых тот говорил (а он не мог их построить, поскольку подавляющее большинство их было бесконечным), теоремы теории множеств растворятся в воздухе. Нужно было вернуться на путь греческой математики, которая была конструктивной, а значит интуиционистской, при этом бесконечность присутствовала только в потенции, но никогда не была актуальной. Гаусс уже высказывал подобное мнение: «Я прежде всего протестую против применения бесконечной величины как завершенной, в математике это никак не допустимо.

Понятие бесконечности есть лишь способ выражения понятия предела». Для интуиционистов все трудности оснований математики исходили из использования бесконечности как чего-то законченного и идеального. Это нарушение происходит при попытке определить реальное число, такое, например, как число = 3, 141592... Это многоточие после первых знаков после запятой создает у нас ложное ощущение, будто перед нами закрытый объект.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука