Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Интуиционизм с его постоянным воззванием к конструктивности, основанной на временной перечислимости и на отказе от принципа «третьего не дано», выбросил за борт более половины классических достижений. С Брауэром математика обрела ясность, но математики наблюдали, как передовые теории, которые казались им прочными как скалы, обращаются в пепел. Хотя нидерландский математик без колебаний принял разрушение анализа, большая часть математического сообщества сочла это неприемлемым. Некоторые математики заговорили о «большевистской угрозе», которую несет Брауэр. И тут Гильберту пришлось вмешаться.



«ЖРЕБИЙ БРОШЕН»

Полемика между формализмом и интуиционизмом лежала в основе всего спора об основаниях в 1920 годы, при этом Гильберт и Брауэр были ее главными участниками. Спор, то ли из-за сложного характера Брауэра, то ли из-за большого авторитета Гильберта, перешел чисто академические границы и обрел форму личного противостояния. Началось оно в 1921 году, и сразу потеря в лагере Гильберта: дезертировал его блестящий ученик Герман Вейль. В этом году он опубликовал памфлет «О новом кризисе оснований математики», в котором поддерживал разгромные тезисы Брауэра и называл себя апостолом интуиционизма, предсказывая приход математической революции.

Спор затрагивал важнейшие стороны концепции математики Гильберта, но его бурная реакция отчасти объяснялась вопросами репутации. Если самый выдающийся ученик перешел в стан врага, почему этого не смогут сделать остальные?

В счастливые 1920-е, которые совпали с последним исследовательским этапом в его карьере, уже пожилой Гильберт посвятил себя спору об основаниях математики. И он вмешался в него со всем пылом, что определило в споре действительно новый поворот. Немец предложил «программу Гильберта» (уже намеченную в его знаменитой лекции в Париже в 1900 году), чтобы раз и навсегда заложить основы математики.

Для Гильберта наука была организмом, который растет и развивается одновременно во многих направлениях. Прояснение оснований с помощью аксиоматического метода было одной из фаз этого роста, и несмотря на всю важность, она необязательно была приоритетной. Для описания этой концепции Гильберт использовал характерную для себя метафору:

«Здание науки строится не как дом, где сначала закладывают прочный фундамент, а потом уже переходят к сооружению конструкции и отделке комнат. Наука прежде всего охватывает широкое пространство, чтобы иметь возможность свободно развиваться. И только после того, как проявляются первые признаки того, что ее слабый фундамент не выдерживает, принимаются за его укрепление и переопределение. Это признак не слабости науки, а наоборот. Это правильный и здоровый путь ее развития».

В математике время исследования оснований уже пришло. С 1900 года убежденный в надежности аксиоматического метода, который так хорошо себя показал в геометрии, Гильберт навязывал аксиоматический подход остальным математическим дисциплинам, в частности теории множеств, а также сделал первые шаги для основания математической теории доказательства. Пока платонизм и логицизм утверждали, что точностью математики ведает царствие небесное, а интуиционизм приписывал это человеческому разуму, формализм Гильберта связывал ее с исписанным листом бумаги. Математику можно рассматривать как игру знаков, лишенных значения, как цепь символов на бумаге, свободных от смысла, но подчиняющихся некоторым правилам, чтобы с ними можно было работать. Формалистская позиция, которую развили Гильберт и его соратники (Бернайс и Аккерман), предлагала решение, основанное на двух моментах: во-первых, на общей аксиоматизации математики и логики, а во-вторых, на доказательстве непротиворечивости этой формальной системы. Доказательство, что внутри системы нельзя вывести никакого противоречия, было краеугольным камнем формалистского здания.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука