- 121 -
- Так вот. Для изображения двух слоев ядер ставим рядом три тетраэдра, чтобы их соприкасающиеся точки слились.
Немедленно перед Радиксом стали на полу три тетраэдра, и указанные точки слились.
- Так, - сказал Илюша, - теперь я как будто понимаю.
Точки в углах тетраэдров - это ядра. В нижнем ряду шесть ядер, в верхнем - три. Все правильно. Основание каждого тетраэдра - это те треугольнички, которые мы называли "черными". А треугольник, который лежит в глубине впадины между тремя тетраэдрами, назывался у нас "белым". Его мы пропускаем. То есть здесь среди шаров и будет та лунка, которую мы не заполняем. А если я сверху, на вершины этих трех тетраэдров, поставлю еще один так, чтобы три точки его основания слились с тремя вершинами нижних трех тетраэдров, то ясно, что на трех шарах будет лежать один. Я получу тогда один большой тетраэдр. Теперь я понял.
- Но это еще не все, - добавил Радикс. - Дело в том, что наиплотнейшее расположение шаров в пространстве, даже в три только слоя, зависит от того, в какие лунки ты кладешь ядра и какие ты пропускаешь. Чтобы это стало совершенно ясным, составим тетраэдры в два слоя так, чтобы соприкасающиеся углы их совпали, и допустим, что эти два слоя тянутся безгранично далеко. У каждого из тетраэдров есть вершина, которая изображает в нашей схеме шар второго слоя. Теперь я хочу добавить еще третий слой, но добавить его не сверху, а снизу. И при этом я могу действовать двумя способами. Либо я к каждому основанию моего тетраэдра приклею основание еще одного (чтобы они совпали и слились воедино), и тогда вершина второго тетраэдра будет стоять симметрично относительно вершины первого. Это первый способ наиплотнейшего расположения шаров в пространстве.
- 122 -
Однако можно действовать и по-другому, то есть приложить основание второго тетраэдра к той впадине, которая образуется менаду двумя рядом стоящими тетраэдрами. Тогда третий, нижний слой шаров будет расположен так, что его можно перевести в первый при помощи того же смещения, которое переводит первый ряд во второй. Комбинируя эти два основных способа укладки, можно получить различные расположения шаров в пространстве. Так вот, куча из ядер, о которой мы с тобой сейчас толкуем, построена по...
- Второму способу! - закончил Илюша. - Ну, теперь ясно, что на Арамиса должны нападать трое сверху, трое снизу и шесть человек со всех сторон! Выходит не так, как всегда говорят: "со всех четырех сторон", а со всех двенадцати сторон! Интересно, сколько же в куче будет всего ядер? Наверху - одно, в следующем слое - столько, сколько видно сбоку в первом треугольнике, то есть три, а в следующем - столько, сколько во втором треугольнике; это будет еще на три ядра больше, значит, шесть. Потом будет уже на четыре больше - десять. Как же считать?
- Об этом ты узнаешь в Схолии Одиннадцатой, а пока продолжай складывать.
- В первом и втором слоях вместе: один да три - четыре.
- Квадрат двух, - подсказал Радикс. - А во втором и третьем?
- 123 -
- Три и шесть - девять, опять квадрат. А шесть и десять - шестнадцать, опять квадрат.
Как интересно! Значит, очень просто эти слои считать: вычти число последнего слоя из следующего квадрата и получишь то, что надо. Следующий квадрат будет двадцать пять. Вычитаю десять, и выходит пятнадцать. Так?
- Твое наблюдение правильно. Это треугольные числа.
- Как интересно! - воскликнул Илюша. - И для всякого числа есть свое название! А выходит, что шесть - это очень знатное число: оно и совершенное и треугольное! Теперь: сколько же всего ядер выходит в куче?
Один слой - одно. Два слоя - четыре. Три слоя - десять. Четыре слоя - двадцать. Пять слоев - тридцать пять.
- А это пирамидальные числа.
- Ну да, потому что выходит пирамида из ядер.
- 124 -