Читаем Восемь этюдов о бесконечности. Математическое приключение полностью

Разминка

Краткое введение в размышления

Размышления: разговор души с самой собой.

Платон

Если вы не поленились и прочитали предисловие, вы уже знаете, что у меня есть довольно солидная коллекция книг по математике. Одно из моих любимых занятий – возиться с интересными задачами. Ну, для меня-то это естественно. Я этому и учился. Но чтобы увидеть красоту и изящество математики, необязательно заканчивать математический факультет. Если вам хватает терпения немного подумать, вы найдете тысячи интересных – и иногда весьма знаменитых – математических задач и парадоксов, которыми уже много веков восхищается стар и млад. Стоит приложить немного усилий, и почти кто угодно сможет испытать тот восторг, в который приводит способность решать головоломки, кажущиеся на первый взгляд чрезвычайно сложными.

В этом разделе я представлю скромный набор математических задач из числа моих любимых, от довольно простых до весьма глубоких и даже предположительно неразрешимых (а если вы их все-таки решите, вас ждет премия). Я хочу познакомить вас, мой уважаемый читатель, хотя бы с немногими образцами интереснейших размышлений, которые вы можете найти в поразительном мире математики.

Великое маленькое исследование – открытая проблема

Много лет назад я прочитал удостоенную Пулитцеровской премии книгу Дугласа Р. Хофштадтера «Гёдель, Эшер, Бах». Сам автор называет ее «метафорической фугой о разумах и машинах в духе Льюиса Кэрролла». Она рассказывает о самых разнообразных предметах из царств математики, музыки, симметрии, искусственного интеллекта и логики и содержит множество математических загадок. Я хотел бы познакомить вас с одной из них.

Возьмем любое число – точнее, любое целое или натуральное число. Ахилл (он же Ахиллес – тот самый, у которого были проблемы с пяткой), также ставший одним из персонажей книги Хофштадтера, задумал число 15. Вы, разумеется, можете выбрать любое число по своему вкусу.

Теперь сделаем вот что: если это число четное, разделим его на 2. Если оно нечетное, умножим его на 3 и прибавим 1. Будем повторять эту процедуру снова и снова, пока не получим (если получим) число 1. Посмотрим, как это работает:

Поскольку 15 – число нечетное, умножим его на 3 и прибавим 1.

15 x 3 + 1 дает 46.

46 – число четное: разделим его на 2 и получим 23. Поскольку это число нечетное, умножим его на 3 и прибавим 1.

23 x 3 + 1 = 70

Продолжим этот процесс:

70/2 = 35;

35 x 3 + 1 = 106;

106/2 = 53;

53 x 3 + 1 = 160;

160/2 = 80;

80/2 = 40;

40/2 = 20;

20/2 = 10;

10/2 = 5;

5 x 3 + 1 = 16;

16/2 = 8;

8/2 = 4;

4/2 = 2, и наконец 2/2 = 1.

Процесс дошел до конца.

Спрашивается, правда ли, что эта процедура рано или поздно приводит к 1 для любого исходного числа?

Попробуйте подставить в нее пару других чисел. Для некоторых из них этот процесс может оказаться чрезвычайно долгим, и вам, возможно, понадобится очень большой лист бумаги. Если вы попытаетесь запустить этот процесс на компьютере, имейте в виду – вычисления могут затянуться.

Хофштадтер предложил Ахиллесу попробовать число 27. Вы можете последовать его примеру. Я дам вам пару минут… или, может быть, часов.

Сдаетесь? Если начать с 27, кажется, что процесс все продолжается и продолжается и дает нескончаемую цепочку вычислений. В какой-то момент вы можете решить, что она и впрямь никогда не закончится. На самом деле требуемое в этом случае число шагов равно 111.

В своей книге Хофштадтер предостерегает Ахиллеса относительно попыток найти ответ на заданный выше вопрос (действительно ли из любого числа можно получить 1?) и рассказывает, что эта задача известна под названием «гипотеза Коллатца» (напомню на всякий случай, что «гипотеза» значит «догадка» или, точнее, «предложение возможной новой теоремы, которую еще нужно доказать»). Она утверждает, что, с какого бы числа мы ни начали описанный выше процесс, он рано или поздно приведет к 1. Эта гипотеза названа в честь немецкого математика Лотара Коллатца (1910–1990), впервые описавшего ее в 1937 г. Тем не менее у нее есть и другие названия: в частности, ее называют гипотезой Улама (по имени польского математика Станислава Улама) или задачей Какутани (по имени японского математика Сидзуо Какутани). Иногда говорят просто о гипотезе 3n + 1, что вполне логично.

Когда я впервые узнал о гипотезе 3n + 1, я был слишком молод, чтобы осознать, насколько сложна и глубока эта задача. Я предполагал, что мне понадобится всего несколько дней, чтобы придумать критерий, определяющий, для каких чисел эта процедура дает на последнем шаге 1. Мне казалось даже, что я сумею доказать истинность гипотезы – что любое число в конце концов приводит к 1. Возможно, занимаясь этим, я даже смогу открыть распределение числа шагов, необходимого для каждого конкретного числа (например, когда мы подставили число 15, количество шагов оказалось равным 17). Я не мог понять только одного: как так получилось, что никто до сих пор не сумел решить эту задачу.

Перейти на страницу:

Похожие книги

Средневековье
Средневековье

История, как известно, статична и не приемлет сослагательного наклонения. Все было как было, и другого не дано. Но если для нас зачастую остаются загадками события десятилетней давности, то что уж тогда говорить о тех событиях, со времени которых прошло десять и более веков. Взять хотя бы Средневековье, в некоторых загадках которого и попытался разобраться автор этой книги. Мы, например, знаем, что монголы, опустошившие Киевскую Русь, не тронули Новгород. Однако же почему это произошло, почему ханы не стали брать древний город? Нам известно, что народная героиня Франции Жанна Д'Арк появилась на свет в семье зажиточного крестьянина, а покинула этот мир на костре на площади в Руане. Так, по крайней мере, гласит официальная биография Жанны. Однако существует масса других версий относительно жизни и смерти Орлеанской девы, например, о том, что происходила она из королевской, а не крестьянской семьи, и что вместо нее на костер поднялась другая женщина. Загадки, версии, альтернативные исследования, неизвестные ранее факты – наверное, тем и интересна история, что в ней отнюдь не все разложено по полочкам и что всегда найдутся люди, которые захотят узнать больше и разгадать ее загадки…

Борис Сергеевич Каракаев , Владислав Леонидович Карнацевич , Сергей Сергеевич Аверинцев

История / Учебная и научная литература / Образование и наука