Читаем Восемь этюдов о бесконечности. Математическое приключение полностью

Во всяком случае, так я думал…

По-видимому, существует веская причина, по которой эта задача все еще считается «открытой проблемой».

Хотя успеха я не добился, это меня не слишком расстроило. Я нахожу трудные вопросы очень привлекательными. Они заставляют размышлять. На самом деле я даже больше люблю задачи, которые не могу решить (или по меньшей мере не могу решить без труда), чем те, которые решаются в момент и без особых интеллектуальных усилий. Разумеется, это не значит, что я оказываюсь на вершине блаженства, когда не могу справиться с какой-нибудь проблемой – несомненно, решение непростой задачи, доставшееся ценой большого труда, доставляет гораздо больше удовольствия.

Вернемся, однако, к нашей гипотезе. Посмотрите, что тут происходит. Мы столкнулись с математической задачей, в которой используются только базовые арифметические операции – сложение, умножение и деление, – и тем не менее никто на свете не знает, как ее решить!

Как такое может быть? Можно было бы предположить, что задача, которую можно сформулировать таким простым образом, должна иметь простое решение. Не тут-то было! На простой вопрос не всегда есть простой ответ. В математике есть множество вопросов, которые можно задать маленькому ребенку, и он легко поймет, в чем состоит задача, но ответов на них до сих пор не нашли даже самые гениальные взрослые.

Если рассмотреть достаточное количество примеров задачи Коллатца, можно заметить одно обстоятельство: последние числа, появляющиеся в этом процессе представляют собой последовательно уменьшающиеся степени 2. Например, если начать с 15, то последние пять чисел последовательности – это 16, 8, 4, 2 и, наконец, 1.

Это явление можно сформулировать в виде правила, сказав, что если процесс доходит до числа вида 2n, то он гарантированно сойдется к 1 в точности через

n делений на 2. Это наблюдение позволяет перефразировать гипотезу 3n + 1 следующим образом: приходит ли на каком-то этапе процесс, начатый с любого произвольного числа, к степени 2?

Принцип замены исходной задачи на другую называется приведением или упрощением. Этот метод – полезный математический инструмент; в некотором смысле он открывает более естественный путь к решению математических задач. Еще одна, похожая, стратегия решения задач – это рассуждения в обратном порядке (от конца к началу). Этот прием, возможно, знаком вам по лабиринтам. Когда разрабатываешь маршрут по лабиринту, иногда бывает удобнее начать от выхода и прокладывать путь к исходной точке. В некотором глубоком смысле можно сказать, что в том же состоит и метод приведения математической задачи.

Венгерский математик Пал Эрдёш (1913–1996) любил предлагать денежные призы за успешное решение интересовавших его открытых математических проблем. Призы эти начинались с 25 долларов, а доказательство гипотезы Коллатца стоило в его прейскуранте целых 500 долларов – то есть попадало в категорию весьма дорогих задач, хотя сам Эрдёш говорил, что мир математики, возможно, не готов к таким сложным и запутанным задачам, как гипотеза 3n + 1. Эрдёша уже нет с нами, но можно не беспокоиться: выплату призов взял на себя его коллега Рон Грэм. Если вам удастся решить эту задачу, вы можете получить приз одним из двух способов: либо в виде чека, который сам Эрдёш выписал перед смертью (его можно только вставить в рамку: срок действия этого чека давно истек), либо реальными деньгами (выбор между грехом гордыни и грехом сребролюбия).

К слову, а также потому, что я хотел бы поделиться этим интересным фактом, самое большое число, когда-либо использованное в математическом доказательстве, названо в честь этого же самого Рона Грэма. Число это настолько велико, что его невозможно записать в стандартной математической нотации.

Мудрость – это знать, что не знаешь того, чего не знаешь, и знаешь то, что знаешь. Глупость – это думать, что знаешь то, чего не знаешь, или не знаешь того, что знаешь.

Китайская пословица
Перейти на страницу:

Похожие книги

Средневековье
Средневековье

История, как известно, статична и не приемлет сослагательного наклонения. Все было как было, и другого не дано. Но если для нас зачастую остаются загадками события десятилетней давности, то что уж тогда говорить о тех событиях, со времени которых прошло десять и более веков. Взять хотя бы Средневековье, в некоторых загадках которого и попытался разобраться автор этой книги. Мы, например, знаем, что монголы, опустошившие Киевскую Русь, не тронули Новгород. Однако же почему это произошло, почему ханы не стали брать древний город? Нам известно, что народная героиня Франции Жанна Д'Арк появилась на свет в семье зажиточного крестьянина, а покинула этот мир на костре на площади в Руане. Так, по крайней мере, гласит официальная биография Жанны. Однако существует масса других версий относительно жизни и смерти Орлеанской девы, например, о том, что происходила она из королевской, а не крестьянской семьи, и что вместо нее на костер поднялась другая женщина. Загадки, версии, альтернативные исследования, неизвестные ранее факты – наверное, тем и интересна история, что в ней отнюдь не все разложено по полочкам и что всегда найдутся люди, которые захотят узнать больше и разгадать ее загадки…

Борис Сергеевич Каракаев , Владислав Леонидович Карнацевич , Сергей Сергеевич Аверинцев

История / Учебная и научная литература / Образование и наука