Аккреционные диски всегда образуются во втором сценарии переноса вещества. В нем один из компонентов заполняет свою полость Роша, что происходит, например, при превращении звезды в красного гиганта, или же размер полости уменьшается при сближении компонент. Вещество начинает перетекать в соседнюю полость Роша через внутреннюю точку Лагранжа. Из-за большого момента импульса (углового момента) захваченное вещество не может сразу упасть на вторую звезду (особенно если это компактный объект), поэтому оно закручивается в кольцо, которое из-за вязкости расплывается в диск.
Аккреция на компактные объекты приводит к появлению ярких, часто рентгеновских, источников.
Теория аккреции начала развиваться еще в 1940-е гг. трудами британских ученых – Германа Бонди (Hermann Bondi), Фреда Хойла и Реймонда Литтлтона (Raymond Lyttleton). Новое развитие она получила после открытия первых рентгеновских источников в двойных системах в 1960-е гг.
В 1972–1973 гг. Николай Шакура и Рашид Сюняев построили теорию дисковой аккреции, являющуюся в настоящее время базовой моделью, позволяющей рассчитывать наблюдаемые свойства аккрецирующих компактных объектов. Эта модель применима и для других ситуаций, в которых образуются диски (активные ядра галактик, молодые звезды и т. д.). Большой вклад в развитие теории аккреции также внесли Кип Торн (Kip Thorne) и Игорь Новиков, которые впервые построили модель с достаточно полным учетом эффектов общей теории относительности.
Слияние двух достаточно массивных белых карликов приводит к вспышке сверхновой типа Ia.
При падении на компактный объект и при образовании аккреционного диска происходит сильный разогрев вещества, поэтому мы наблюдаем аккрецирующие объекты как яркие источники. Если аккреция идет на нейтронную звезду или черную дыру звездной массы, то основная часть энергии уносится рентгеновским излучением. Эффективность энерговыделения может достигать десятков процентов от предельно возможного значения (mc2). Такие источники были впервые открыты с помощью космических аппаратов в 1960-е гг., а начиная с 1970-х гг. стали одним из основных источников информации о нейтронных звездах и черных дырах.
Особое место занимают системы, состоящие сразу из двух компактных объектов. Их слияния приводят к появлению мощных источников разных классов. Сейчас известно несколько двойных, состоящих из двух белых карликов или двух нейтронных звезд, а также системы из белого карлика и нейтронной звезды.
Слияния двух белых карликов приводят к вспышке сверхновой типа Ia. Для этого необходимо, чтобы суммарная масса сливающихся объектов превосходила критическую. Сверхновые этого типа являются одним из основных поставщиков тяжелых элементов (в первую очередь группы железа), поскольку обычно происходит полное разрушение взрывающегося объекта.
Слияния двух нейтронных звезд приводят к появлению короткого гамма-всплеска. При этом также происходит выделение энергии и на более длинных волнах – вспыхивают так называемые килоновые. Кроме того, такие события важны с точки зрения синтеза ряда тяжелых элементов (например, золота), рождающихся в быстром (r-) процессе (см. раздел 5.2 «Химическая эволюция Вселенной. Звезды»). Наконец, слияния нейтронных звезд являются источниками гравитационных волн.
Слияния двойных нейтронных звезд и черных дыр сопровождаются мощным гравитационно-волновым всплеском.
Первый гравитационно-волновой всплеск был зарегистрирован установками LIGO (Laser Interferometer Gravitational-Wave Observatory, Лазерно-интерферометрическая гравитационно-волновая обсерватория, см. раздел 13.9 «Детекторы гравитационных волн») осенью 2015 г., причиной события стало слияние двух черных дыр. Благодаря большой массе сливающихся объектов всплески можно обнаруживать на космологических расстояниях, превышающих миллиард световых лет. Для расчета темпа таких событий важно хорошо понимать эволюцию двойных звезд. Слияния нейтронных звезд происходят чаще слияний с участием черных дыр, зато бóльшая масса последних позволяет видеть такие события с бóльших расстояний. Сейчас данные с гравитационно-волновых детекторов позволяют уточнить картину эволюции двойных звезд.
4.5. Образование звезд. Три населения
Звезды образуются из облаков газа и пыли в процессе их сжатия. Соответственно, процесс звездообразования зависит от свойств газа: плотности, температуры, химического состава, турбулентности, магнитных полей и других параметров.