Процесс формирования первых звезд начался спустя десятки миллионов лет после начала расширения Вселенной, когда газ содержал очень малое количество элементов тяжелее гелия. Возникшие из этой среды звезды относят к населению III (иногда вместо термина «население» используют «популяция» или «поколение»). В настоящее время такие звезды с нулевым содержанием элементов тяжелее гелия не обнаружены ни в наших окрестностях, ни при наблюдениях далеких объектов в молодой Вселенной.
Первые звезды, возникшие из газа первичного состава, относят к населению III.
Следующий важный этап связан с началом формирования нашей Галактики, когда вещество уже было немного обогащено тяжелыми элементами благодаря взрывам первых массивных звезд. Первые пару миллиардов лет темп образования звезд в Галактике был очень велик. На ранних этапах формирования Галактики и возникла большая звездная популяция – население II, в основном звезды этой популяции находятся в гало и шаровых скоплениях, а также в балдже (см. раздел 8.1 «Структура Галактики»).
В Галактике выделяют два звездных населения: I и II. Звезды населения II бедны элементами тяжелее гелия, а звезды населения I имеют примерно солнечный состав. Кроме того, у них разные кинематические свойства.
Наконец, процесс звездообразования продолжился в диске Галактики, где идет и сейчас. Химический состав Галактики (газа и звезд в ней) меняется, но уже не слишком существенно, он примерно соответствует солнечному, и все звезды Галактики с таким составом относят к населению I. Населения I и II впервые были выделены в 1944 г. Вальтером Бааде (Walter Baade) по результатам сравнения звезд нашей Галактики со звездами туманности Андромеды (М31).
Процесс формирования звезд вызывает еще много вопросов, однако в общих чертах картина представляется ясной, особенно применительно к современному звездообразованию. Развитие наблюдательных возможностей позволяет видеть различные этапы образования звезд: начиная от появления уплотнений в молекулярных облаках и заканчивая молодыми объектами, выходящими на Главную последовательность и еще окруженными протопланетными или остаточными дисками.
Звезды рождаются в результате коллапса внутренних частей молекулярных облаков.
Молекулярные облака содержат практически весь молекулярный водород в Галактике. Их средняя плотность обычно составляет несколько сотен атомов водорода в кубическом сантиметре, а массы – от сотен до миллионов масс Солнца. Внутренняя структура облака довольно сложная: выделяют сгустки, в которых могут образовываться звезды, и протозвездные ядра, где этот процесс уже идет. В сгустках плотность составляет от тысячи до сотни тысяч атомов в кубическом сантиметре, а в протозвездных ядрах – превосходит сто тысяч атомов в кубическом сантиметре. Средняя температура в облаках 10–30 K, в сгустках она чуть меньше, а в протозвездных ядрах часто даже ниже 10 K. Типичные размеры облаков – несколько парсек, сгустков – менее 2 парсек, а размеры протозвездных ядер исчисляются уже десятками тысяч астрономических единиц.
В облаках существуют мощные турбулентные потоки и магнитные поля, обеспечивающие устойчивость облака. В процессе сжатия и под действием турбулентности возникают уплотнения, масса которых превосходит критическую (так называемую джинсовскую массу), и тогда начинается коллапс, приводящий к образованию звезд. Протозвезда аккрецирует газ, пока он не закончится или пока излучение звезды не начнет ионизировать, нагревать и отбрасывать газ. Если сжатие началось, то протозвезда формируется относительно быстро – за миллион лет (а массивные звезды даже быстрее).
Детальное рассмотрение условий сжатия газа под действием гравитации выполнил в 1902 г. Джеймс Джинс (James Jeans), в честь которого и были названы соответствующие критические величины – джинсовские масса и длина. Он показал, что для сгустка газа, находящегося в равновесии (как правило, его внутреннее давление уравновешивается давлением внешней среды и силой гравитации), существуют критическая масса и размер, при превышении которых начинается сжатие.