Читаем Вселенная в зеркале заднего вида полностью

Поскольку в уравнение входят и гравитационная постоянная, и постоянная Планка, планковский масштаб учитывает воздействие как сильной гравитации, так и квантовой механики. В самом-самом начале вселенной — примерно через 10–44 секунды после Большого Взрыва (это очень-очень мало и называется, кстати, планковское время) — квантовые флуктуации создали черные дыры, которые буквально заполонили вселенную. И мы правда не понимаем, каковы были законы физики в планковское время.

Планковская масса задает естественную шкалу, позволяющую понять, чего можно ожидать от фундаментальных частиц, однако мы так и не нашли частицу, чья масса хотя бы отдаленно была похожа на планковскую. Планковская масса приблизительно в 100 квадрильонов раз больше массы топ-кварка — самой тяжелой из известных нам частиц. Это как будто на ярмарке кто-нибудь предположил бы, что вы весите как Плутон. Это, конечно, очень грубо — зато наталкивает на мысль, что оценщику хорошо бы избрать себе какое-нибудь другое поприще.

Если, к примеру, протон обладает массой в 10–19 планковской, физики понимают, что это как-то очень мало и, наверное, требует объяснений. Какова вероятность, что мы получили столь малую величину по чистой случайности? Поскольку ни одна из известных частиц даже близко не подходит к массе, которая им полагается «от природы», остается вопрос: почему все такое легкое?

Как устроена гравитация?

Когда я описывал стандартную модель, то прибегал к выражениям вроде «три силы за исключением гравитации». Но почему же мы исключаем гравитацию? По всей видимости, ее роль в порядке вещей не так уж незначительна.

Общая теория относительности великолепно описала гравитацию, однако нельзя отрицать, что гравитация по форме разительно отличается от всех остальных взаимодействий: ни частицы-переносчика, ни квантовой неопределенности. Как же нам примирить ее со всеми прочими, а в частности — с квантовой механикой?

Поскольку гравитация доминирует, когда массы достаточно велики, а квантовая механика — на мелких масштабах, как правило, этим двум теориям нечего делить. В нормальных обстоятельствах на то, как объединить квантовую механику и гравитацию, нам намекают излучение Хокинга и эффект Унру, однако мы до сих пор не знаем точно, как объединить эти теории в целом.

Мы не понимаем, как быть с сингулярностями вроде тех, которые мы обнаруживаем в центрах черных дыр и в момент Большого взрыва. Сингулярность — это космологический аналог — волшебная сумка из игры в «Dungeons & Dragons»: можно поместить в конечный объем пространства буквально бесконечное количество вещества. По правде говоря, как это получается, не знает никто.

Чего нам еще не хватает?

Я сделал довольно смелое заявление, что стандартная модель позволяет нам предсказать все частицы, какие только мы ни наблюдали, и ничего лишнего. Строго говоря, так и есть, только я позабыл напомнить вам, что есть еще несколько физических явлений, которые пока остаются необъясненными, и стандартная модель тут оказывается бессильной.

К несчастью для нас, это не какие-нибудь мелочи, а темное вещество с темной энергией, которые совокупно составляют приблизительно 95 % плотности энергии во вселенной.

Если помните, темное вещество скрепляет галактики и звездные скопления, и его, по всей видимости, раз в пять-шесть больше, чем обычного вещества, состоящего из протонов и нейтронов. Гравитационное воздействие темного вещества мы наблюдаем непосредственно, и это наводит на очевидный вывод, что где-то поблизости шныряет какая-то частица темного вещества. А поскольку темное вещество обеспечивает так много массы, частиц темного вещества должно быть, прямо скажем, очень много. Темное вещество должно быть электрически нейтральным, иначе мы бы его сразу заметили. Этим условиям из всей стандартной модели удовлетворяют одни лишь нейтрино, однако, хотя их и в самом деле очень много, они очень легкие, и на темное вещество их не хватит. Другой вероятный кандидат — аксионы, вот только, как я уже говорил, мы совсем не уверены, что они вообще есть на свете.

Однако есть проблема и похуже — по крайней мере с точки зрения каталогизации долей энергии во вселенной. Это темная энергия, которая, судя по всему, составляет чуть ли не 73 % общей плотности энергии во вселенной. Такого шила в мешке не утаишь.

Простейшее объяснение темной энергии состоит в том, что это суммарное воздействие частиц, возникающих и исчезающих в вакууме. В некотором смысле считать темную энергию энергией вакуума — это идеальный выход из положения. Прорешайте уравнения — и окажется, что энергия вакуума вызывает ускоряющееся расширение вселенной, в точности как темная энергия.

Однако тут таится подвох. Как же без этого.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги